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Abstract

Fibonacci words are words of 1’s and 2’s, graded by the total sum of the digits. They form
a differential poset (YF) which is an estranged cousin of the Young lattice powering irreducible
representations of the symmetric group. We introduce families of ”coherent” measures on YF
depending on many parameters, which come from the theory of clone Schur functions [Oka94].
We characterize parameter sequences ensuring positivity of the measures, and we describe
the large-scale behavior of some ensembles of random Fibonacci words. The subject has
connections to total positivity of tridiagonal matrices, Stieltjes moment sequences, orthogonal
polynomials from the (q-)Askey scheme, and residual allocation (stick-breaking) models.

What is this text

These are notes for a chalk talk, prepared based on the paper [PS24], in the “extended lecture
notes” style, similar to my random matrix course. Along the notes, there are numerous skipped
details, which are left as exercises for the reader.
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1 Roadmap

• First, I gently introduce concepts related to branching graphs and their boundaries, starting
with one familiar and one maybe less familiar example — the Pascal triangle and the Young
lattice.

• Then, I discuss the Young–Fibonacci lattice, a differential poset, and its boundary. This
object is not exactly easy to digest, so I’ll spend some time describing it.

• Finally, driving from parallels with the Young lattice, I introduce clone Schur functions, and
briefly discuss our own results on positivity of coherent measures on the Young–Fibonacci
lattice, and the large-scale behavior of random Fibonacci words.

2 Motivation 1. De Finetti’s theorem and Pascal triangle

2.1

Definition 2.1. A sequence X1, X2, . . . of binary random variables (taking values in {0, 1}) is
called exchangeable if for any n and any permutation σ of {1, 2, . . . , n} the joint distribution of
X1, X2, . . . , Xn is the same as the joint distribution of Xσ(1), Xσ(2), . . . , Xσ(n).

Exchangeable sequences are more than just Bernoulli iid sequences with some parameter
p ∈ [0, 1]. Consider the Polya urn scheme.

Start with an urn containing b black and w white balls. At each step, draw a ball uniformly
at random from the urn and put it back along with another ball of the same color.

The sequence of ball colors drawn from the urn is exchangeable.
At time n, there are n new balls in the urn, and the distribution of the number of, say, black

balls,
P (black = k) = Mn(k), k = 0, 1, . . . , n,

is called the (n-th) coherent measure. We can talk about Sn, the random variable which is the
number of black balls drawn by time n. The coherent measures Mn for various n satisfy certain
linear recurrence relations.

One can convince oneself that the space of coherent measures is the same as the space of
exchangeable random sequences of 0’s and 1’s. This space is a convex set, moreover, it is a
simplex.

Definition 2.2. A point A in a convex linear set is called extremal if it cannot be written as a
convex combination of other points in the set. A simplex is a convex set in which every point is
a unique convex combination of extremal points.

Examples: triangle vs square vs disc.

Extreme points of the simplex corresponding to the Pascal triangle are given by iid sequences,
that is, Bernoulli product measures on {0, 1}∞ with parameter p ∈ [0, 1]. This is de Finetti’s
theorem.

Any coherent measure corresponds to a convex combination of the iid measures, which is
expressed as the mixing distribution, i.e., a Borel probability measure µ on [0, 1].
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2.2

Coherent measures on Pascal triangle are related to exchangeable sequences of 0’s and 1’s. The
boundary of the Pascal triangle encodes all possible coherent measures via the law of large num-
bers,

Sn

n
→ µ on [0, 1].

Extreme measures correspond to delta point masses. For example, the Polya urn for a = b = 1
corresponds to µ being the uniform measure on [0, 1].

2.3 Lonely paths

There are two distinguished paths in the Pascal triangle, the lonely paths 0 → 00 → 000 → . . .
and 1 → 11 → 111 → . . ., which are characterized by the property that [GK00b]

All but finitely many vertices in the path have a single immediate predecessor.

These paths correspond to the extreme measures with µ = δ0 and µ = δ1, respectively.
It turns out that all other extreme measures on the Pascal triangle are obtained by a “convex

interpolation” of these two lonely path measures. Note that this interpolation is not the same as
the convex combination of coherent measures, so the points p ∈ (0, 1) are still extremal for the
space of coherent measures. However, the boundary of the Pascal triangle clearly contains the
linear piece between δ0 and δ1.

Remark 2.3. Convex interpolation here is an elementary version of the Kerov–Goodman flow
[GK00b] which exists between Plancherel and other coherent measures on both Young and Young–
Fibonacci lattices (we do not mention it below, just mention it here). For Pascal triangle, the
flow essentially reduces to the elementary coupling between iid sequences: If you have an iid coin
flip sequence with probability p, then you can pick a proportion of 1’s and turn them into zeros
— this will clearly create an iid sequence with a smaller p.

Exercise 2.4. Write this flow on the Pascal triangle in terms of coherent measures, as a formula
for (CτMn)(k), where for Mn an iid Bernoulli coherent measure with parameter p, Cτ produces
a coherent measure with parameter pτ (or p(1− τ) maybe).

3 Motivation 2. Young lattice

The Young lattice Y of integer partitions ordered by the relation “adding a box” encodes another
meaningful structure — irreducible representations of the symmetric groups. The boundary
encodes the irreducible representations of the infinite symmetric group S(∞).

3.1

The Young lattice is a differential poset [Sta88], [Fom94], in the sense that

for each λ, there is one more element in the set {ν : ν = λ+□} than in the set
{µ : µ = λ−□}.
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Differential poset property implies that for fλ the number of paths from ∅ to λ, we have∑
|λ|=n

(fλ)2 = n!, define Mn(λ) :=
(fλ)2

n!
.

The measure Mn is called Plancherel, it is coherent and extremal. It corresponds to the regular
representation of S(∞), which is irreducible.

3.2

There are two lonely paths here, as well — corresponding to growing one-row and one-column
partitions.

3.3

All extreme coherent measures on the Young lattice are given by specializations of Schur sym-
metric functions, and have the form

Mn(λ) = sλ(α⃗; β⃗; γ) · fλ.

The problem of describing the boundary of Y is equivalent to the problem of finding parameters
α⃗, β⃗, γ such that the Schur functions sλ(α⃗; β⃗; γ) are nonnegative for all λ.

Schur functions are (essentially) determinants, and for the Young lattice, we have a great
match between these multiparameter functions and extreme coherent measures. The algebraic
combinatorial property of the Schur polynomials which connects them to the Young lattice is the
Pieri rule:

p1sλ =
∑

ν : ν=λ+□

sν .

Remark 3.1. The parameters α⃗; β⃗; γ encode the law of large numbers for the growing random
Young diagram. The parameters αi and βi are the lengths of the i-th row and column scaled by
n−1, and γ is the scaled excess 1 −

∑
(αi + βi). For the Plancherel measure, rows and columns

grow as
√
n, so αi = βi = 0 and γ = 1.

4 Another differential poset — the Young–Fibonacci lattice

4.1

A natural question arises: do other differential posets exist? Indeed, there exists another funda-
mental example, denoted YF, which, upon first examination, might seem contrived and unnatural.
(While there also exists a family of posets interpolating between YF and Y, we shall not explore
that here.)

4.2

The Young–Fibonacci lattice YF can be formed starting from the single edge ∅ → 1, by successive
reflection. We then encode the new vertices as starting from 1 (followed by the old vertex index
from the level n − 1), and the reflected vertices as starting from 2 (followed by the old vertex
index from the level n− 2).
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4.3

YF is a graded poset formed by Fibonacci words (binary words whose digits lie in {1, 2}), graded
by the sum of their digits.

We denote the set of all Fibonacci words of weight n by YFn. Clearly, the total number of
such words is the nth Fibonacci number (with F0 = F1 = 1). The poset YF is then the disjoint
union of all YFn for n = 0, 1, 2, . . . , with rank function given by the weight |w| = n. We always
identify the empty word ∅ with YF0.

Definition 4.1 (Young–Fibonacci Partial Order). We say a Fibonacci word w covers another
Fibonacci word v if |v| = |w| − 1 and one can transform w to v by one of the following rules:

1. If w = 1 v, then we delete the leftmost 1 to obtain v.

2. If w = 2u for some u, then we obtain v by turning the leftmost 2 into a 1 or by removing
the leftmost inserted 1 after a 2.

4.4

The Young–Fibonacci lattice is a differential poset. Hence, we have∑
|w|=n

(dimw)2 = n!,

and we can define the Plancherel measure

Mn(w) :=
(dimw)2

n!
.

Note that the YF-dimension is very different from the Young lattice one. For w ∈ YFn of the
form w = a1 a2 · · · aℓ, we have

dim(w) =
∏

1≤ j≤ ℓ
aj =2

(
|uj |+ 1

)
,

where uj is the subword to the right of the j-th digit.
The Plancherel measure is extremal.
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∅

1

11 2

111 21 12

1111 211 121 22 112

11111 2111 1211 221 1121 122 212 1112

Figure 1: The Young–Fibonacci lattice up to level n = 5.

4.5 Boundary problem

We would like to understand the boundary of YF. As in the Young and Pascal cases, the boundary
should capture the law of large numbers for the growing Fibonacci words.

4.6 Lonely paths

In contrast with the Young lattice and the Pascal triangle, the Young–Fibonacci lattice has many
lonely paths. Namely, there is a lonely path from each Fibonacci word w:

1w, 11w, 111w, . . .

We denote it by 1∞w. Lonely paths correspond to extreme measures, so the boundary has a
“discrete component” 1∞YF.

The full boundary looks as the Plancherel point, connected to all points 1∞w, w ∈ YF,
by linear segments (via the “convex interpolation” as in the Pascal case — recall that these
segments are still extremal for coherent measures). Graphically, the boundary is a “star” with
the Plancherel point in the center.

4.7 Boundary description — references

The boundary of the Young–Fibonacci lattice was established in the following works:

• [GK00b] described the Martin boundary, which is the set of all coherent measures obtained
by finite rank approximation. It remained an open problem to show that this list is of
extreme measures.

• [GK00a], shown that the Plancherel measure is extremal (ergodic), by considering the scal-
ing limit of Plancherel random Fibonacci words. They essentially show that this limit is
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incompatible with any other possible point from the Martin boundary, thus leading to the
extremality.

• Preprints [BE20], [Evt20] established the full boundary description by showing the ex-
tremality (ergodicity) of all coherent measures.

4.8 How about Schur functions?

While we now understand the boundary’s structure, a natural question arises: are there elegant
functions, analogous to determinantal Schur functions, that capture the combinatorial properties
of this lattice? Indeed, such functions exist - the clone Schur functions introduced by Okada
[Oka94]. These functions were specifically developed to provide an algebraic framework for the
Young–Fibonacci lattice, paralleling how classical Schur functions encode the structure of the
Young lattice.

The clone Schur functions sw(x⃗ | y⃗) (definition later) satisfy a Pieri rule:

x|w|+1sw(x⃗ | y⃗) =
∑

v : v↗w

sv(x⃗ | y⃗).

There are clone coherent measures defined from clone Schur functions,

Mn(w) = sw(α⃗; β⃗; γ) · dimw,

but they are not extremal (except for the Plancherel case).

4.9 Now, briefly, what we do with this

We get the following main results:

1. Complete classification of clone coherent measures which are positive. This is related to
total positivity of tridiagonal matrices and Stieltjes moment problems. In fact, we obtain
a new, narrower notion of tridiagonal positivity called Fibonacci positivity.

2. We describe a number of examples of Fibonacci positive specializations.

3. For several Fibonacci positive specializations, we consider the large-scale behavior of random
Fibonacci words.

5 Clone Schur functions and positivity

5.1 Definition

Let x⃗ = (x1, x2, . . .) and y⃗ = (y1, y2, . . .) be two families of indeterminates. Define two sequences
of tridiagonal determinants as follows:

Aℓ(x⃗ | y⃗ ) := det


x1 y1 0 · · ·
1 x2 y2
0 1 x3
...

. . .


︸ ︷︷ ︸
ℓ× ℓ tridiagonal matrix

, Bℓ−1(x⃗ | y⃗ ) := det


y1 x1y2 0 · · ·
1 x3 y3
0 1 x4
...

. . .


︸ ︷︷ ︸

ℓ× ℓ tridiagonal matrix

. (5.1)
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Here ℓ ≥ 0. For a sequence u⃗ = (u1, u2, . . .), denote its shift by u⃗ + ℓ = (u1+ℓ , u2+ℓ , . . .), where
ℓ ∈ Z≥0.

Definition 5.1. For any Fibonacci word w, define the (biserial) clone Schur function sw(x⃗ | y⃗ )
through the following recurrence:

sw(x⃗ | y⃗ ) :=

{
Ak(x⃗ | y⃗ ), if w = 1k for some k ≥ 0,

Bk

(
x⃗+ |u| | y⃗ + |u|

)
· su(x⃗ | y⃗ ), if w = 1k2u for some k ≥ 0.

(5.2)

Note that these functions are not symmetric in the variables, and the order in the sequences
(x1, x2, . . .) and (y1, y2, . . .) is important.

5.2 Positivity problem: reduction to tridiagonal matrices

For the positivity of the functions sw(x⃗ | y⃗ ), it is necessary that the infinite tridiagonal matrix
x1 y1 0 · · ·
1 x2 y2
0 1 x3
...

. . .

 (5.3)

is totally positive (that is, all its minors that are not identically zero must be positive).
Total positivity of tridiagonal matrices is a well-known phenomenon [FZ99]. We have a

stronger requirement than just the total positivity of (5.3) — we need the total positivity of
another family of matrices,

Br

(
x⃗
∣∣ y⃗ ) :=


yr+1 xr+1yr+2 0 · · ·
1 xr+3 yr+3

0 1 xr+4
...

. . .

 ,

for all r. The tridiagonal matrix (5.3) is a good starting point, though: it allows us to reparametrize

xk = 1 + tk−1, yk = tk, t0 = 0, tj > 0, j ≥ 1.

(There are some obvious renormalizations of the parameters x⃗, y⃗ which we ignore, and focus only
on the primary case.)

5.3 Fibonacci positivity: result

There are two classes of t⃗-sequences for which the specializations of clone Schur functions are
positive.

Theorem 5.2. All Fibonacci positive sequences (x⃗, y⃗ ) have the form

xk = ck (1 + tk−1), yk = ck ck+1 tk, k ≥ 1,

where c⃗ is an arbitrary positive sequence, and t⃗ = (t1, t2, . . .) (with t0 = 0, for convenience) is a
positive real sequence of one of the two types:
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• (divergent type) The infinite series

1 + t1 + t1t2 + t1t2t3 + . . . (5.4)

diverges, and tm+1 ≥ 1 + tm for all m ≥ 1;

• (convergent type) The series (5.4) converges, and

1 + tm+3 + tm+3tm+4 + tm+3tm+4tm+5 + . . . ≥ tm+1

tm+2(1 + tm − tm+1)
, for all m ≥ 0.

The sequences c⃗ and t⃗ are determined by (x⃗, y⃗ ) uniquely.

A divergent type sequence can be written as

tk = k + ε1 + . . .+ εk,

where εj ≥ 0. Then the matrices (5.3) and Br have all minors either identically zero, or element
of Z[ε1, ε2, . . .] with positive coefficients.

5.4 Examples for which we do scaling limits

• Plancherel: xk = yk = k, so tk = k;

• A two-parameter deformation: xk = k + ρ + σ − 2, yk = (k + σ − 1)ρ, where σ ≥ 1 and
0 < ρ ≤ 1.

Other examples come from orthogonal polynomials in the (q-)Askey scheme. We describe the
framework next.

Examples with convergent series are, for example, tk = α/kγ , γ > 1.

5.5 Stieltjes moment problem

Recall that a sequence a⃗ = (a0, a1, a2, . . . ) of real numbers is called a strong Stieltjes moment
sequence if there exists a nonnegative Borel measure ν(dt) on [0,∞) with infinite support such
that an =

∫∞
0 tnν(dt) for each n ≥ 0. The following result may be found, e.g., in [Sok20]:

Theorem 5.3. A sequence of real numbers a⃗ = (a0, a1, a2, . . . ) is a strong Stieltjes moment
sequence if and only if there exist two real number sequences, x⃗ and y⃗, such that the matrix
A
(
x⃗ | y⃗

)
defined in (5.3) is totally positive, and the (normalized) ordinary moment generating

function of a⃗,

M(z) =
∑
n≥0

an
a0

zn, (5.5)

is expressed by the Jacobi continued fraction depending on ( x⃗ | y⃗ ) as

M(z) = J x⃗,y⃗ (z) :=
1

1− x1z − y1z
2

1− x2z −
y2z

2

1− x3z −
y3z

2

. . .

(5.6)
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Moreover, the equality between the generating function M(z) (5.5) and the continued fraction
J x⃗,y⃗ (z) (5.6) is witnessed by the recursion

Pn+1(t) = (t− xn+1)Pn(t)− ynPn−1(t), n ≥ 1, P0(t) = 1, P1(t) = t− x1.

responsible for generating the polynomials Pn(t) which are orthogonal with respect to the nonneg-
ative Borel measure ν(dt) on [0,∞) whose moment sequence is a⃗.

An open problem stands:

White the ordinary tridiagonal positivity is parametrized by nonnegative Borel mea-
sures on [0,∞), the Fibonacci positivity truncates a subclass of these measures. This
subclass is mysterious and not well-understood.

5.6 Orthogonal polynomials

In “integrable” cases, when the parameters xj , yj are related to orthogonal polynomials from the
(q-)Askey scheme, the moments an can be expressed combinatorially as sums of certain statistics
over set partitions. For example, for σ = 1, we have an = Bn(ρ) =

∑
π ρ

#blocks(π), which are the
Bell (Touchard) polynomials. The associated measure is the Poisson distribution with parameter
ρ.

We also have a number of other “classical” polynomials (Al-Salam–Chihara, Al-Salam–Carlitz,
etc.; but sometimes with q > 1 and weird reparametrizations compared to [KS96]), and some new
phenomena. For example, for general (ρ, σ), the orthogonality measure is a certain discrete
distribution with atoms at nontrivial locations, and

M
(
z; ρ, σ

)
=

1F1

(
σ; σ − 1

z ; −ρ
)

1F1

(
σ − 1; σ − 1

z ; −ρ
)
− z(σ − 1) 1F1

(
σ; σ − 1

z ; −ρ
) . (5.7)

6 Asymptotics

6.1 Convergent type

We define µI(1
∞w) as the limit of Mn+|w|(1

nw) as n → ∞. This is (in general, sub-)probability
measure on 1∞YF, the discrete part of the boundary of the Young–Fibonacci lattice. We have

µI(1
∞) =

∞∏
i=0

(1 + ti)
−1,

and when this infinite product converges, we have

µI(1
∞YF) = 1.

That is, in convergent type, under an additional convergence assumption, we can conclude that
the weighting measure on the boundary is fully supported on the “discrete” component.

6.2 Divergent type

We have scaling limits for the measures ρ = 1, σ ≥ 1 and σ = 1, 0 < ρ ≤ 1. Both of these regimes
recover the Plancherel measure result of [GK00a].
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6.2.1

Consider the Charlier specialization

xk = k + ρ− 1 and yk = kρ, ρ ∈ (0, 1]. (6.1)

Definition 6.1. For any 0 < ρ < 1, let ηρ be a random variable on [0, 1] with the distribution

ρδ0(α) + (1− ρ)ρ(1− α)ρ−1dα, α ∈ [0, 1]. (6.2)

In words, ηρ is the convex combination of the point mass at 0 and the Beta random variable
beta(1, ρ), with weights ρ and 1− ρ.

Write a Fibonacci word as w = 1r121r2 . . ..

Theorem 6.2. Let w ∈ YFn be a random Fibonacci word distributed according to the deformed
Plancherel measure Mn with 0 < ρ < 1. For any fixed k ≥ 1, the joint distribution of the runs
(r1(w), . . . , rk(w)) has the scaling limit

rj(w)

n−
∑j−1

i=1 ri(w)

d−−−→
n→∞

ηρ;j , j = 1, . . . , k,

where ηρ;j are independent copies of ηρ.

We can reformulate this statement in terms of the residual allocation (stick-breaking) process:(r1(w)
n

,
r2(w)

n
, . . .

)
d−→ X = (X1, X2, . . .),

where X1 = U1, Xk = (1 − U1) · · · (1 − Uk−1)Uk for k ≥ 2, and Uk are independent copies
of ηρ. Unlike in the classical GEM distribution family, here the variables Uk can be equal to
zero with positive probability ρ. Thus, the random Fibonacci word under the Charlier (deformed
Plancherel) measure asymptotically develops hikes of 2’s of bounded length (namely, these lengths
are geometrically distributed with parameter ρ). On the other hand, if we remove all zero entries
from the sequenceX = (X1, X2, . . .), then the resulting sequence is distributed simply as GEM(ρ).

(GEM is a fundamental distribution in probability modeling and such.)

6.2.2

Consider the shifted Plancherel specialization

xk = yk = k + σ − 1, σ ∈ [1,∞). (6.3)

Definition 6.3. Let

G(α) := 1− (1− α)
σ
2 , g(α) :=

σ

2
(1− α)

σ
2
−1, α ∈ [0, 1], (6.4)

be the cumulative and density functions of the Beta distribution beta(1, σ/2). For any σ ≥ 1, let
ξσ;1, ξσ;2, . . . be the sequence of random variables with the following joint cumulative distribution
function (cdf):

P (ξσ;1 ≤ α1, . . . , ξσ;n ≤ αn) := σ−n+1G(α1) · · ·G(αn)+(σ−1)

n−1∑
j=1

σ−n+jG(α1) · · ·G(αn−j). (6.5)

Denote the right-hand side by F
(σ)
n (α1, . . . , αn).
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Remark 6.4. Alternatively, the random variables ξσ;k can be constructed iteratively as follows.
Toss a sequence of independent coins with probabilities of success 1, σ−1, σ−2, . . .. Let N be the
(random) number of successes until the first failure. We have

P(N = n) = σ−(n2) (1− σ−n), n ≥ 1. (6.6)

Then, sample N independent beta(1, σ/2) random variables. Set ξσ;k, k = 1, . . . , N , to be these
random variables, while ξσ;k = 0 for k > N . It is worth noting that the random variables ξσ;k are
not independent, but ξσ;1, . . . , ξσ;n are conditionally independent given N = n.

Write w = 2h112h21 . . ..

Theorem 6.5. Let w ∈ YFn be a random Fibonacci word with distributed according to the shifted
Plancherel measure Mn with σ ≥ 1. For any fixed k ≥ 1, the joint distribution of the hikes
(h̃1(w), . . . , h̃k(w)) has the scaling limit

h̃j(w)

n−
∑j−1

i=1 h̃i(w)

d−−−→
n→∞

ξσ;j , j = 1, . . . , k,

where ξσ;j are as constructed above.

For this model, we also note that there are noncommuting limits for σ > 1:

1. If we first take the limit as n → ∞, we only see finitely many hikes of 2’s.

2. However, if we consider the total sum of the 2’s, the scaling limit of the quantity
∑n

i=1 h̃i(w)/n
has expectation 1/(σ+1), which is strictly greater than the quantity obtained from GEM-
like distribution.

We have, using the fact that E(beta(1, σ/2)) = 2
2+σ :

E
[ ∞∏
j=1

(1− ξσ;j)

]
=

∞∑
m=1

P(N = m)
( σ

2 + σ

)m
=

∞∑
m=1

σ−(m2 )(1− σ−m)
( σ

2 + σ

)m
.

One can check that
1

2
E
[ ∞∑

j=1

Xj

]
≤ 1

σ + 1
, (6.7)

with equality at σ = 1, where the difference between the two sides of the inequality is at
most ≈ 0.015, and vanishes as σ → ∞.
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