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1 Multilayer models and multilayer KPZ FP

• There has been success in finding exact formulas for PNG with arbitrary initial conditions
[MQR25]. Can this be extended to multilayer PNG? What class of initial conditions can we
consider?

• Find the scaling limit of the multilayer PNG in the spirit of KPZ FP [MQR21], [MQR25].

• More generally, consider multilayer models such as the multi-path partition functions in the
O’Connell-Yor semi-discrete directed Brownian polymer [O’C12, Theorem 3.1 and subsequent
SDEs], [BC14, Definition 4.1.26], [BP16, Section 8.4]. At the edge, this model scales to the KPZ
equation and further to the KPZ fixed point. What is the scaling limit in the bulk? Potential
related models include Macdonald processes and general beta random matrix ensembles (both
dynamical — Dyson Brownian motion — and the corners process). One reference is on the
q-deformed bulk dynamics [CT16].

2 Two-dimensional particle systems and continuous growth
models

2.1 2d ASEP

• Study the two-dimensional asymmetric simple exclusion process (ASEP) on the lattice Z2, where
particles attempt hops to the four cardinal directions (N, S, E, W) with differing asymmetric
rates. A key question is whether the resulting fluctuations can be linked to the two-dimensional
KPZ universality class.

• An essential step is to define a suitable height function that maps particle configurations to
a continuous interface. The challenge is to capture the local imbalance in particle flows and
to ensure that the macroscopic limit is well-defined. One idea involves studying the exit time
required for a particle to exit a fixed ball in Z2.

• Investigate how various initial conditions (e.g., a half-plane fully occupied by particles) influence
the hydrodynamic scaling limits and the fluctuation behavior.

• A long-term goal is to rigorously derive the continuum stochastic partial differential equations
(SPDEs) that govern the evolution of current fluctuations and stationary measures in the scaling
limit.

2.2 Isotropic 2d KPZ

• The isotropic two-dimensional KPZ problem remains largely open. A central challenge is to
identify the fluctuation exponents and to characterize the fixed point process that would parallel
the one-dimensional KPZ FP.
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2.3 Anisotropic models

• In contrast to the isotropic case, anisotropic KPZ models [BF14], [BCT17], [BT18] are expected
to exhibit different scaling behaviors. A key question is whether these models converge to a
distinct fixed point under appropriate scaling limits.

• One potential approach involves analyzing the coupling of Gaussian free fields (GFFs) with varying
slopes to understand the invariant measures of the hypothetical two-dimensional anisotropic
KPZ FP.

3 Log-concavity

• A function f is log-concave if

f(a)f(b) ≤ f

(
a+ b

2

)2

.

One example of such function is the Gaussian density function. Note that the variables a, b might
be vectors or matrices. Log-concavity is fundamental in probability theory and combinatorics,
e.g., [BB05], [HMMSD22].

• Consider continuous-time TASEP with step initial condition. There is an associated transition
probability function f(a) into the configuration a. A question arises whether f(a) is log-concave.
While log-concavity appears in many probabilistic models, it remains unclear how to establish it
in this context. The motivation includes connections to symmetric functions.

• The density of the Tracy–Widom random variable is itself log-concave [BLS17]. For a large
permutation of size n, the longest increasing subsequence length Ln often (after suitable centering
and scaling) converges to the Tracy–Widom distribution. Does Tracy–Widom log-concavity extend
to the finite, discrete models that approximate or ‘discretize’ the Tracy–Widom distribution?
Such discrete distributions count permutations by fixed longest increasing subsequence length
and may exhibit log-concavity under certain conditions. For a recent development, see [BKM24].

4 KPZ behavior in quantum spin chains

• Compute the large-time current fluctuations for the XXZ spin-1/2 chain on a 1D lattice.

• The edge fluctuations for ∆ = 0 with domain wall initial conditions were computed in [STW22]
and shown to have Tracy-Widom GUE distribution. Partial asymptotic computations for ∆ ̸= 0
were carried out, resulting on a precise conjecture for the fluctuations.

• The edge fluctuations for ∆ ≫ 1 with alternating domain wall initial conditions were considered in
[FS24]. The authors gave strong numerical evidence that the edge fluctuations have Tracy-Widom
GUE distribution. In the limit ∆ → ∞, the authors show that the edge fluctuations have
Tracy-Widom GUE fluctuations.

• Other current observables were also considered in [TTB+24]. By extensive numerical analysis,
the authors show that the characteristic length of the system scales as t2/3, in agreement with
models in the KPZ universality class.

5 Colored particles on the ring

• Can one derive an analogue of the TASEP speed process [AAV11], [ACG23] for colored particle
systems (TASEP or ASEP, for starters) evolving on a ring?

• Does a color-position symmetry exist in particle systems on a ring? (Model particular case:
Half-open systems?) For models on the full space or in half-space geometries, such symmetries
have been crucial for deriving exact formulas and understanding integrable structures. There
are many references on color-position symmetry and the related property of shift-invariance, e.g.,
[BB21], [Buf20], [Gal21], [Cor21], [Dau22].
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• Can the dynamics of colored particles on a ring be recast in terms of an (affine) Hecke algebra
structure?

• Is there an analogue of color-position symmetry within the framework of LPP models? Recent
works on “hidden invariance” cited above hint at deep invariance properties that might extend to
colored systems.

• Within the known stationary measures of ASEP, can we investigate correlations? Consider the
asymmetric simple exclusion process (ASEP) on a large ring with two particle colors, with particle
densities ρ1 and ρ2. Define ηi(x) as the indicator for the presence of a particle of color i at
site x under stationarity. A key question is to understand how the covariance between particle
occupations decays with increasing spatial separation. When densities are close to 1/2, one could
leverage the convergence to Brownian motions with drift and known stationary horizon properties
to conjecture explicit forms for the correlation decay. For general densities, connections with
known ASEP or TASEP analogues, such as speed processes or hidden invariances, may provide
valuable insights.

6 Longest common subsequence

• Consider two independent random sequences (strings) of i.i.d. Bernoulli(0,1) variables, or more
generally, i.i.d. variables taking values in a finite alphabet. The main question is to understand
the typical size and the fluctuations of their longest common subsequence (LCS). Recent works
have studied various regimes of this problem.

• One central object of study is the almost-sure growth rate (or time constant) of the LCS as the
string lengths grow. Determining this constant precisely remains an open problem in many cases.
A potential approach would be to rephrase the LCS problem in the language close to LPP, and
potentially use Busemann functions.

• In the special setting where one of the two sequences is purely periodic and the other is random,
more progress has been made. In particular, the papers [BC22], [BPSW24] relate the LCS problem
to a version of the PushTASEP on the ring.

7 KPZ line ensemble and random permutations

• Take a vertical slice of the KPZ line ensemble [CH16], how close is the permutation of Z≥1 to the
identity permutation? Is the permutation finite at all? In the Airy line ensemble, the permutation
is trivial with probability 1.

• Note that there are two versions of the KPZ line ensemble: the one where the k-th curve escapes
to +∞ (when the Gibbs property is independent of k), and the one where the deep curves stabilize
(but the Gibbs property depends on k; this second version is the one arising as scaling limits).

8 Busemann functions and LPP

• A key theme is to explore connections between multipath LPP partition functions and Busemann
functions defined in several directions. Busemann functions have long been instrumental in the
study of geodesics, current fluctuations, and stationary measures in exactly solvable models such
as TASEP and exponential/geometric LPP. Suitable multipath analogues of Busemann functions
might prove fruitful in scaling limits of LPP/polymer models.

• The Airy line ensemble and its Gibbs property [CH14] play a central role in integrable probability.
One intriguing question is what happens when random path segments are resampled using the
Brownian Gibbs property. As DL is a functional of the Airy line ensemble, it is natural to ask
how the DL changes under such resamplings.
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• Beyond the original construction via Brownian last passage percolation, alternate descriptions of
the DL have begun to emerge, leveraging tools such as Busemann functions, Airy line ensembles,
and stationary variants of LPP. Each of these viewpoints can shed light on the universality
and rich geometric behavior inherent in the KPZ class. In discrete integrable systems, “melon”
constructions often refer to nonintersecting random walks obtained as a functional of independent
random walks. These naturally have connections to the Robinson–Schensted–Knuth (RSK)
correspondence and its various extensions. Investigating how “stationary melons” behave under a
Busemann-oriented perspective and how they embed in the directed landscape is an interesting
direction.

9 Relaxing/perturbing integrable models

• Can one can relax the iid Bernoulli random walks that underlie the nontrivial structure in
integrable models like PNG or TASEP, in formulas around the KPZ FP [MQR21], [MQR25]?
Another example includes the two-layer Gibbs measures (again, relying on simple random walks)
that provide descriptions of stationary distributions in open particle systems [BCY24].

• It is natural to attempt a characterization of stochastic processes that one can put into formulas
instead of random walks.

10 ASEP on graphs or trees

• On finite trees or graphs, ASEP is an irreducible Markov chain with a unique stationary distri-
bution. Unlike the one-dimensional case, no simple product form generally exists. In infinite
random trees, a nonzero flow can persist if branch capacities exceed the injection rate at the root;
otherwise, the system becomes fully jammed [GGS21].

• Classical one-dimensional ASEP maps to the inviscid Burgers equation in the hydrodynamic
limit. On general graphs, each edge follows a Burgers-type PDE, subject to coupling constraints
at vertices (junctions). Simple merges (e.g., 2-to-1 lanes) already exhibit nontrivial shock and
rarefaction waves, influencing phase diagrams and throughput [ZKR19].

• While large deviation principles for current fluctuations are well-understood in 1D, explicit
formulas on general graphs remain scarce. Macroscopic fluctuation theory suggests bottlenecks
dominate rare-event statistics, and phase separation can occur if certain edges saturate.

• Road networks with on- and off-ramps, intersections, or multi-lane traffic can be modeled
by ASEP on graphs. Key phenomena include traffic jams localized around bottlenecks. In
intracellular transport, motor proteins on complex filament networks create dense or jammed
regions. Mathematical models align with observations of phase heterogeneity and spontaneous
symmetry breaking [NKP13], [ARES15].

A Abbreviations

• USC: Upper semi-continuous function

• KPZ FP: KPZ Fixed Point

• ASEP: Asymmetric simple exclusion process

• PNG: Polynuclear growth

• KPZ: Kardar-Parisi-Zhang

• LPP: Last passage percolation

• FPP: First passage percolation

• GUE: Gaussian unitary ensemble
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• XXZ: Anisotropic Heisenberg model

• LCS: Longest common subsequence

• RSK: Robinson-Schensted-Knuth

• GFF: Gaussian free field

• DL: Directed landscape
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