Jekyll2020-05-26T09:37:54-04:00https://lpetrov.cc/posts/feed.xmlLeonid PetrovLeonid Petrov. Integrable ProbabilityLeonid PetrovOnline conference on Statistical Mechanics, Integrable Systems and Probability2020-04-14T00:00:00-04:002020-04-14T00:00:00-04:00https://lpetrov.cc/2020/04/SMISP<div>"<a href="http://mtikhonov.com/smisp/">Online conference on Statistical Mechanics, Integrable Systems and Probability</a>", <b>April 27 - May 1, 2020</b>.</div>Leonid Petrov"Online conference on Statistical Mechanics, Integrable Systems and Probability", April 27 - May 1, 2020.Spin deformation of q-Whittaker polynomials and Whittaker functions2020-04-13T00:00:00-04:002020-04-13T00:00:00-04:00https://lpetrov.cc/2020/04/sqW<p>Spin $q$-Whittaker symmetric polynomials labeled by partitions $\lambda$ were recently introduced by Borodin and Wheeler (<a href="https://arxiv.org/abs/1701.06292">arXiv:1701.06292</a>) in the context of integrable $\mathfrak{sl}_2$ vertex models. They are a one-parameter deformation of the $t=0$ Macdonald polynomials. We present a new, more convenient modification of spin $q$-Whittaker polynomials and find two Macdonald type $q$-difference operators acting diagonally in these polynomials with eigenvalues, respectively, $q^{-\lambda_1}$ and $q^{\lambda_N}$ (where $\lambda$ is the polynomial’s label). We study probability measures on interlacing arrays based on spin $q$-Whittaker polynomials, and match their observables with known stochastic particle systems such as the $q$-Hahn TASEP.</p>
<p>In a scaling limit as $q\nearrow 1$, spin $q$-Whittaker polynomials turn into a new one-parameter deformation of the $\mathfrak{gl}_n$ Whittaker functions. The rescaled Pieri type rule gives rise to a one-parameter deformation of the quantum Toda Hamiltonian. The deformed Hamiltonian acts diagonally on our new spin Whittaker functions. On the stochastic side, as $q\nearrow 1$ we discover a multilevel extension of the beta polymer model of Barraquand and Corwin (<a href="https://arxiv.org/abs/1503.04117">arXiv:1503.04117</a>), and relate it to spin Whittaker functions.</p>
<p>Based on a <a href="https://lpetrov.cc/2020/03/sqW/">joint work with Matteo Mucciconi</a>
and earlier works with <a href="https://lpetrov.cc/2017/12/YBfield/">Alexey Bufetov</a> and <a href="https://lpetrov.cc/2019/05/BMP_YB/">both of them</a>.</p>
<!-- these references correspond to the CV PDF, papers basically in order of arXiv -->
<!--more-->
<p><a href="https://storage.lpetrov.cc/research_files/talks/sqw.pdf" target="_blank">PDF (33.6 MB)</a></p>Leonid PetrovSpin $q$-Whittaker symmetric polynomials labeled by partitions $\lambda$ were recently introduced by Borodin and Wheeler (arXiv:1701.06292) in the context of integrable $\mathfrak{sl}_2$ vertex models. They are a one-parameter deformation of the $t=0$ Macdonald polynomials. We present a new, more convenient modification of spin $q$-Whittaker polynomials and find two Macdonald type $q$-difference operators acting diagonally in these polynomials with eigenvalues, respectively, $q^{-\lambda_1}$ and $q^{\lambda_N}$ (where $\lambda$ is the polynomial’s label). We study probability measures on interlacing arrays based on spin $q$-Whittaker polynomials, and match their observables with known stochastic particle systems such as the $q$-Hahn TASEP. In a scaling limit as $q\nearrow 1$, spin $q$-Whittaker polynomials turn into a new one-parameter deformation of the $\mathfrak{gl}_n$ Whittaker functions. The rescaled Pieri type rule gives rise to a one-parameter deformation of the quantum Toda Hamiltonian. The deformed Hamiltonian acts diagonally on our new spin Whittaker functions. On the stochastic side, as $q\nearrow 1$ we discover a multilevel extension of the beta polymer model of Barraquand and Corwin (arXiv:1503.04117), and relate it to spin Whittaker functions. Based on a joint work with Matteo Mucciconi and earlier works with Alexey Bufetov and both of them.Spin q-Whittaker polynomials and deformed quantum Toda2020-03-31T00:00:00-04:002020-03-31T00:00:00-04:00https://lpetrov.cc/2020/03/sqW<p>Spin $q$-Whittaker symmetric polynomials labeled by partitions $\lambda$ were recently introduced by Borodin and Wheeler (<a href="https://arxiv.org/abs/1701.06292">arXiv:1701.06292</a>) in the context of integrable $\mathfrak{sl}_2$ vertex models. They are a one-parameter deformation of the $t=0$ Macdonald polynomials. We present a new, more convenient modification of spin $q$-Whittaker polynomials and find two Macdonald type $q$-difference operators acting diagonally in these polynomials with eigenvalues, respectively, $q^{-\lambda_1}$ and $q^{\lambda_N}$ (where $\lambda$ is the polynomial’s label). We study probability measures on interlacing arrays based on spin $q$-Whittaker polynomials, and match their observables with known stochastic particle systems such as the $q$-Hahn TASEP.</p>
<p>In a scaling limit as $q\nearrow 1$, spin $q$-Whittaker polynomials turn into a new one-parameter deformation of the $\mathfrak{gl}_n$ Whittaker functions. The rescaled Pieri type rule gives rise to a one-parameter deformation of the quantum Toda Hamiltonian. The deformed Hamiltonian acts diagonally on our new spin Whittaker functions. On the stochastic side, as $q\nearrow 1$ we discover a multilevel extension of the beta polymer model of Barraquand and Corwin (<a href="https://arxiv.org/abs/1503.04117">arXiv:1503.04117</a>), and relate it to spin Whittaker functions.</p>Leonid PetrovSpin $q$-Whittaker symmetric polynomials labeled by partitions $\lambda$ were recently introduced by Borodin and Wheeler (arXiv:1701.06292) in the context of integrable $\mathfrak{sl}_2$ vertex models. They are a one-parameter deformation of the $t=0$ Macdonald polynomials. We present a new, more convenient modification of spin $q$-Whittaker polynomials and find two Macdonald type $q$-difference operators acting diagonally in these polynomials with eigenvalues, respectively, $q^{-\lambda_1}$ and $q^{\lambda_N}$ (where $\lambda$ is the polynomial’s label). We study probability measures on interlacing arrays based on spin $q$-Whittaker polynomials, and match their observables with known stochastic particle systems such as the $q$-Hahn TASEP. In a scaling limit as $q\nearrow 1$, spin $q$-Whittaker polynomials turn into a new one-parameter deformation of the $\mathfrak{gl}_n$ Whittaker functions. The rescaled Pieri type rule gives rise to a one-parameter deformation of the quantum Toda Hamiltonian. The deformed Hamiltonian acts diagonally on our new spin Whittaker functions. On the stochastic side, as $q\nearrow 1$ we discover a multilevel extension of the beta polymer model of Barraquand and Corwin (arXiv:1503.04117), and relate it to spin Whittaker functions.MATRIX program 20202020-01-26T00:00:00-05:002020-01-26T00:00:00-05:00https://lpetrov.cc/2020/01/MATRIX<div>(<b>program postponed due to COVID-19</b>) Program "<a href="https://www.matrix-inst.org.au/events/integrability-and-combinatorics-at-finite-temperature/">Integrability and Combinatorics at Finite Temperature</a>",
MATRIX Institute, University of Melbourne, <b>June 1-19, 2020</b>.</div>Leonid Petrov(program postponed due to COVID-19) Program "Integrability and Combinatorics at Finite Temperature", MATRIX Institute, University of Melbourne, June 1-19, 2020.2021 travel2020-01-17T00:00:00-05:002020-01-17T00:00:00-05:00https://lpetrov.cc/2020/01/travel-2021<!-- ##### January -->
<!--more-->
<h5 id="february">February</h5>
<p>22-26 • San Jose, CA • AIM SQuaRE</p>
<!-- ##### March -->
<!-- ##### April -->
<h5 id="may">May</h5>
<p>(<strong>postponed due to COVID-19</strong>)
3-21
•
Florence, Italy
•
Program “Randomness, Integrability and Universality” at Galileo Galilei Institute</p>
<!-- ##### June -->
<h5 id="july">July</h5>
<p>19-23
•
Seoul, South Korea
•
<a href="http://wc2020.org/index.php">10th World Congress in Probability and Statistics</a>
•
(<em>rescheduled from 2020</em>)</p>
<!-- ##### August -->
<!-- ##### September -->
<!-- ##### October -->
<!-- ##### November -->
<!-- ##### December -->Leonid PetrovMATH 3340 • Complex Variables with Applications2020-01-04T00:00:00-05:002020-01-04T00:00:00-05:00https://lpetrov.cc/2020/01/complexLeonid PetrovMATH 7310 • Real Analysis and Linear Spaces I2020-01-04T00:00:00-05:002020-01-04T00:00:00-05:00https://lpetrov.cc/2020/01/grad-realLeonid PetrovParameter symmetry in perturbed GUE corners process and reflected drifted Brownian motions2019-12-17T00:00:00-05:002019-12-17T00:00:00-05:00https://lpetrov.cc/2019/12/pert_GUE_symm<p>The perturbed GUE corners ensemble is the joint distribution of eigenvalues of all principal submatrices of a matrix $G+\mathrm{diag}(\mathbf{a})$, where $G$ is the random matrix from the Gaussian Unitary Ensemble (GUE), and $\mathrm{diag}(\mathbf{a})$ is a fixed diagonal matrix. We introduce Markov transitions based on exponential jumps of eigenvalues, and show that their successive application is equivalent in distribution to a deterministic shift of the matrix. This result also leads to a new distributional symmetry for a family of reflected Brownian motions with drifts coming from an arithmetic progression.</p>
<p>The construction we present may be viewed as a random matrix analogue of the <a href="https://lpetrov.cc/2019/07/backwards_TASEP/">recent results</a> of the first author and Axel Saenz.</p>Leonid PetrovThe perturbed GUE corners ensemble is the joint distribution of eigenvalues of all principal submatrices of a matrix $G+\mathrm{diag}(\mathbf{a})$, where $G$ is the random matrix from the Gaussian Unitary Ensemble (GUE), and $\mathrm{diag}(\mathbf{a})$ is a fixed diagonal matrix. We introduce Markov transitions based on exponential jumps of eigenvalues, and show that their successive application is equivalent in distribution to a deterministic shift of the matrix. This result also leads to a new distributional symmetry for a family of reflected Brownian motions with drifts coming from an arithmetic progression. The construction we present may be viewed as a random matrix analogue of the recent results of the first author and Axel Saenz.Parameter permutation symmetry in particle systems and random polymers2019-12-12T00:00:00-05:002019-12-12T00:00:00-05:00https://lpetrov.cc/2019/12/symm_IPS<p>Many integrable stochastic particle systems in one space dimension (such as TASEP - Totally Asymmetric Simple Exclusion Process - and its various deformations, with a notable exception of ASEP) remain integrable when we equip each particle $x_i$ with its own jump rate parameter $\nu_i$. It is a consequence of integrability that the distribution of each particle $x_n(t)$ in a system started from the step initial configuration depends on the parameters $\nu_j$, $j\le n$, in a symmetric way. A transposition $\nu_n \leftrightarrow \nu_{n+1}$ of the parameters thus affects only the distribution of $x_n(t)$. For $q$-Hahn TASEP and its degenerations (namely, $q$-TASEP and beta polymer) we realize the transposition $\nu_n \leftrightarrow \nu_{n+1}$ as an explicit Markov swap operator acting on the single particle $x_n(t)$. For beta polymer, the swap operator can be interpreted as a simple modification of the lattice on which the polymer is considered. Our main tools are Markov duality and contour integral formulas for joint moments.</p>
<!--more-->
<p>In particular, our constructions lead to a continuous time Markov process $\mathsf{Q}^{(\mathsf{t})}$ preserving the time $\mathsf{t}$ distribution of the $q$-TASEP (with step initial configuration, where $\mathsf{t}\in \mathbb{R}_{>0}$ is fixed). The dual system is a certain transient modification of the stochastic $q$-Boson system. We identify asymptotic survival probabilities of this transient process with $q$-moments of the $q$-TASEP, and use this to show convergence of the process $\mathsf{Q}^{(\mathsf{t})}$ with arbitrary initial data to its stationary distribution.</p>
<p>Setting $q=0$, we recover the results about the usual TASEP established recently in <a href="https://lpetrov.cc/2019/07/backwards_TASEP/">this paper</a> by a different approach based on Gibbs ensembles of interlacing particles in two dimensions.</p>Leonid PetrovMany integrable stochastic particle systems in one space dimension (such as TASEP - Totally Asymmetric Simple Exclusion Process - and its various deformations, with a notable exception of ASEP) remain integrable when we equip each particle $x_i$ with its own jump rate parameter $\nu_i$. It is a consequence of integrability that the distribution of each particle $x_n(t)$ in a system started from the step initial configuration depends on the parameters $\nu_j$, $j\le n$, in a symmetric way. A transposition $\nu_n \leftrightarrow \nu_{n+1}$ of the parameters thus affects only the distribution of $x_n(t)$. For $q$-Hahn TASEP and its degenerations (namely, $q$-TASEP and beta polymer) we realize the transposition $\nu_n \leftrightarrow \nu_{n+1}$ as an explicit Markov swap operator acting on the single particle $x_n(t)$. For beta polymer, the swap operator can be interpreted as a simple modification of the lattice on which the polymer is considered. Our main tools are Markov duality and contour integral formulas for joint moments.PushTASEP in inhomogeneous space2019-10-20T00:00:00-04:002019-10-20T00:00:00-04:00https://lpetrov.cc/2019/10/pushTASEP<p>We consider the PushTASEP (pushing totally asymmetric simple exclusion process, also sometimes called long-range TASEP) with the step initial configuration evolving in an inhomogeneous space. That is, the rate of each particle’s jump depends on the location of this particle. We match the distribution of the height function of this PushTASEP with Schur processes. Using this matching and determinantal structure of Schur processes, we obtain limit shape and fluctuation results which are typical for stochastic particle systems in the Kardar-Parisi-Zhang universality class. PushTASEP is a close relative of the usual TASEP. In inhomogeneous space the former is integrable, while the integrability of the latter is not known.</p>Leonid PetrovWe consider the PushTASEP (pushing totally asymmetric simple exclusion process, also sometimes called long-range TASEP) with the step initial configuration evolving in an inhomogeneous space. That is, the rate of each particle’s jump depends on the location of this particle. We match the distribution of the height function of this PushTASEP with Schur processes. Using this matching and determinantal structure of Schur processes, we obtain limit shape and fluctuation results which are typical for stochastic particle systems in the Kardar-Parisi-Zhang universality class. PushTASEP is a close relative of the usual TASEP. In inhomogeneous space the former is integrable, while the integrability of the latter is not known.