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1 Motivation

The seminal result at the beginning of Random Matrix Theory is the Wigner semicircle law,
which states: For the Wigner matrix ensemble (scaled by 1/

√
n), the empirical spectral distri-

bution (ESD):

νn =
1

n

n∑
i=1

δλi
,

which is a random probability measure on R, converges weakly, almost surely to the semicircle
distribution µsc:

µsc(dx) =
1

2π

√
4− x2 dx, x ∈ [−2, 2].

This is sometimes viewed as the law of large numbers for Wigner matrices; the average of
random measures goes to their mean, which is deterministic. More precisely, one can consider
a.s. convergence of random variables:

ˆ
R
f(x) νn(dx), f ∈ Cb(R).

That will give the law of large numbers for linear statistics1.
As a routine for probabilists, we are led to consider its fluctuation and, further, the central

limit theorem (CLT). However, it seems impossible to discuss these for random measures.

1Let λ′
is be the eigenvalues of a random matrix. The linear statistic associated with a test function f is

defined as: LN (f) =
∑N

i=1 f(λi). The function f can be chosen to extract various aspects of the spectrum,
for instance, f = xp for the p-th moments of the ESD, while more complex functions can be used to probe
fluctuations or localized spectral behavior.
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One way to move on is to consider their linear statistics, especially their moments. Let’s first
consider the latter one:

m(n)
p =

ˆ
R
xp νn(dx) =

1

n

∑
λp
i =

1

n
Tr(Ap).

In the combinatorial proof of the semicircle law, we have shown by the super concentration
Var( 1n TrAp) = O(n−2) that a.s.

1

n
TrAp → µp =

{
(2s)!

s!(s+1)! , if p = 2s,

0, if p = 2s+ 1.
(1.1)

and due to strong correlations between eigenvalues2, the fluctuation is of order 1
n . So the right

thing to analyze here is
TrAp − ETrAp.

Lots of information about fluctuation is neglected before scaled by n. If one counts more
carefully, by a large extent Jonsson’s method[Jon82],[AGZ10, Section 2.1.7], the CLT can be
proved that TrAp−ETrAp converge in distribution to N (0, σp) for any fixed p. A by-product
of this is the CLT for linear statistics associated with polynomials.

Under some mild assumptions, [SS98] gives a much fancier version of CLT, where the power
p is growing at a slower rate than

√
n, by the so-called Sinai-Soshniko technique. With this

in hand, one can show the CLT for linear statistics associated with holomorphic functions.
This is an improvement of the work by Z.Füredi and J.Komlós[FK81], who discussed the case

p = o(n− 1
6 ). Our main task in this article is to present the Sinai-Soshniko technique in detail.

2 Main Results

Consider Real Wigner matrices, where the components aij = aji =
ξij√
n
of the symmetric

n× n matrices A are such that:

1. {ξij}1≤i≤j≤n are independent random variables;

2. The laws of distribution for ξij are symmetric, hence all odd moments of ξij vanish;

3. Each moment Eξpij exists and E|ξpij | ≤ Cp, Cp is a constant depending only on p;

4. The second moments of ξij , i < j, are equal 1
4 ; for i = j they are uniformly bounded3.

We will prove:

Theorem 1 (Main Theorem). Consider real symmetric Wigner ensemble with the additional
assumption

E ξ2kij ≤ (const k)k, const > 0 (2.1)

uniformly in i, j and k, meaning that the moments of ξij grow not faster than the Gaussian.
Then

E(TrAp) =

{
1√
π

n
s3/2

(1 + o(1)), p = 2s

0, p = 2s+ 1
(2.2)

2One can consider the vandermonde term in GβE.
3So that the limiting spectrum will be modified to unit interval.
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and TrAp − E(TrAp) converges in distribution to N (0, 1
π ), as long as 1 ≪ p ≪

√
n.

Moreover, define ⌊etp⌋ as the nearest integer p′ to etp such that p′ − p is even, then the
random process

ηp(t) = TrA⌊etp⌋ − ETrA⌊etp⌋

converges in the finite-dimensional distributions to the stationary (Gaussian) process η(t) with
zero mean and covariance function:

Cov(η(t1), η(t2)) = E η(t1) · η(t2) =
1

π cosh
(
1
2(t1 − t2)

) . (2.3)

Remark. For fixed s, by the asymptotic of Catalan number Cs ∼ 4s

s3/2
√
π
, (2.2) is consistent

with (1.1). However, the weak limit for fixed p differs that for growing p, it converges in
distribution to N (0, σP ), where σp is determined by p, see [AGZ10]. There is also finite-
dimensional limit for fixed exponents [AZ06].

Remark. The finite-dimensional limit here doesn’t depend on the fourth and higher moments
of ξij and rate of growth of p. This supports the conjecture of the local universality of the
distribution of eigenvalues in different ensembles of random matrices.

Remark. The technique used in [SS98] can be modified to extend the results to the case of not
necessarily symmetrically distributed random entries. The main result can also be extended to
the complex Wigner ensemble and Wishart matrices, which means it’s valid for GOE
and GUE.

3 Applications

Before digging further into the combinatorics, the first application here concerns the rate of
convergence of the maximal eigenvalue. Z. D. Bai and Y. Q. Yin showed in [BY88] the a.s.
convergence of λmax to 1 assuming only the existence of the fourth moments of ξij , where the
main ingredient is the estimate of the mathematical expectations of traces of high powers of
A. In [TW96], C. Tracy and H. Widom proved that for Gaussian Orthogonal Ensemble4

λmax(A) = 1 +O(n−2/3)

and calculated the famous GOE Tracy-Widom distribution

G(x) = lim
n→∞

P
{
λmax < 1 +

x

n2/3

}
.

With our main theorem, we have:

Corollary 2. Under the conditions of the Main Theorem

λmax(A) = 1 + o(n−1/2 log1+ϵ n)

for any ϵ > 0 and with probability 1.

4Here we have pre-scaled the matrix by 1
2
√

n
.
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Proof. Choose

p = 2

[
1

2

n1/2

logϵ/2 n

]
, ∀ϵ > 0.

Then

P
{
λmax(A) ≥ 1 +

log1+ϵ n

n1/2

}
≤ P

{
Tr (Ap) ≥

(
1 +

log1+ϵ n

n1/2

)p}
≤ P

{
Tr (Ap) ≥ 1

2
exp

(
log1+ϵ/2 n

)}
≤ ETrAp

1
2 exp

(
log1+ϵ/2 n

)
= o

(
n exp

(
− log1+ϵ/2 n

))
,

where the second inequality is by log(1 + x) ≥ x− x2

2 for x > 0 and it’s at least valid for large
n. It implies

∞∑
n=1

P
{
λmax(A) ≥ 1 +

log1+ϵ n

n1/2

}
< ∞.

From Borel-Cantelli lemma,

λmax(A) = 1 +O(n−1/2 log1+ϵ n) a.s.

hence λmax(A) = 1 + o(n−1/2 log1+ϵ n) since ϵ is arbitrary.

Remark. The interesting fact here is that one uses a result of global statistics, which is in the
Gaussian universality class, to prove a result for local statistics, which is central in the KPZ
universality class.

As a crucial application, we now emphasize that:

Corollary 3. Let f(z) be an analytic function on a neighborhood of the closed unit disk |z| ≤ 1.
Then 5

n∑
i=1

f(λi)− E

(
n∑

i=1

f(λi)

)
converges in distribution to the Gaussian N (0, σf ).

Proof. Denote the linear statistics by

Sn(f) :=

n∑
i=1

f (λi) ,

and

E =

{
|λi| ≤ 1 +

log1+ϵ n√
n

; i = 1, . . . , n

}
.

5A more precise way is to take value 0 for λ out of the domain.
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We first truncate it, write:

Sn(f) = Sn(f)1E + Sn(f)1Ec .

It follows from Corollary 1 that probability of Ec decays faster than any power of n and since
Sn(f) = O(n),

ESn(f)− E (Sn(f)1E) −→
n→∞

0.

It suffices to prove the Central Limit Theorem for Sn(f)1E . Write the Taylor series for
f(x):

f(x) =

∞∑
k=0

akx
k,

and hence

Sn(f)1E =

∞∑
k=0

ak TrA
k1E

by absolute convergence in the convergent circle. An immediate idea is to use our result for
traces.

Fix a large enough M and write:

Sn(f)1E − E(Sn(f)1E) =
∞∑
k=0

ak

(
TrAk1E − E

(
TrAk1E

))
=

M∑
k=0

ak

(
TrAk1E − E

(
TrAk1E

))

+

n1/10∑
k=M+1

ak

(
TrAk1E − E

(
TrAk1E

))
+

∑
k>n1/10

ak

(
TrAk1E − E

(
TrAk1E

))
.

Cauchy’s estimate implies the exponential decay of the series coefficients:

|ak| ≤ c(1− δ)k, c = c(δ) > 0, 0 < δ < 1.

It will be proved later that
Var (TrAp) , p ≪

√
n

are uniformly bounded. We first do some estimates for the variance. Let bkn = TrAk1E −
E
(
TrAk1E

)
,

Var

(
M∑
k=0

ak

(
TrAk1E − E

(
TrAk1E

)))
=

M∑
k,l=0

akal Cov(b
k
n, b

l
n),

|RHS| ≤
M∑

k,l=0

|akal|
√
Var(bkn)Var(b

l
n) =

(
M∑
k=0

|ak|
√
Var(bkn)

)2

≤ c′(

M∑
k=0

(1− δ)k)2.
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Together with the exponential decay, it yields that the variance of the first subsum is bounded.
This statement is also valid if we substitute M with n1/10, hence (by DCT)

lim
n→∞

Var

n1/10∑
k=0

ak

(
TrAk1E − E

(
TrAk1E

)) =

∞∑
k,l=0

akal lim
n→∞

Cov(bkn, b
l
n) < ∞,

where the existence of limits in RHS is from the main theorem, and we denote this whole limit
σf . Similarly, we have variance for the second subsum6

Var

 n1/10∑
k=M+1

ak

(
TrAk1E − E

(
TrAk1E

)) (3.1)

is controlled by (1− δ)2M .
We also have∣∣∣∣∣∣

∑
k>n1/10

ak

(
TrAk1E − E

(
TrAk1E

))∣∣∣∣∣∣ ≤
∑

k>n1/10

2nc(1− δ)k(1 +
log1+ϵ n√

n
)k

≤ 2nc
(1− δ)n

1/10
(1 + log1+ϵ n√

n
)n

1/10

1− (1− δ)(1 + log1+ϵ n√
n

)

→ 0 , n → ∞.

This implies the tail part goes to 0, even uniformly. From the finite-dimensional weak
convergence to a Gaussian vector as shown in [AZ06], we have that for any fixed M , the first
subsum converges in distribution to a Gaussian. M can be large enough as we want, and as
(3.1) is controlled by (1 − δ)2M . Let’s now consider the c.d.f. for the sum of the first two
terms, we denote them by XM and YM ,

P(XM < t− ϵ)− P(YM ≥ ϵ) ≤ P(XM + YM < t) ≤ P(|YM | ≥ ϵ) + P(XM < t+ ϵ),

choosing M large enough, we can see XM + YM converge weakly to N (0, σf ), thus the CLT
holds7.

4 Sinai-Soshnikov Technique

We give a brief discussion here about the combinatorial technique introduced in the original
paper, and also a sketch of the proof of the main theorem, which can be seen as a strengthening
of our first proof for the semicircle law.

We start with the expectation.

Theorem 4.
E
(
TrA2s

)
=

n√
π s3

(
1 + o(1)

)
as n → ∞,

uniformly in s = o(
√
n).

6Notice that here we need to use our result for growing p, while other estimates can be yielded from results
for fixed p.

7Here we use the Slutsky’s Theorem.
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Since

E
(
TrAp

)
=

1

np/2

n∑
i0,i1,...,ip−1=1

E
[
ξi0i1 ξi1i2 · · · ξip−1i0

]

=
1

np/2

[ p
2
]+1∑

t=1

O(nt)(Contribution of paths of t vertices),

we need to focus on different types of closed paths P := i0 −→ i1 −→ · · · −→ ip−1 −→ i0
of length p and their contributions to the expectation. The flavor of the argument here is
similar to that for the semicircle law, but the classification of paths here is much more subtle.
In the proof for the semicircle law, one basically ignores the contribution of all closed paths
except the double trees, because p is fixed and the number of these paths is of smaller order
than np/2+1. Here, this simplification doesn’t work since the growth of p leads to infinitely
many vertices in the graph, and the contribution of each path can’t be simply controlled by
one constant. However, things are not that bad since our entries are symmetrically distributed,
E
[
ξi0i1 ξi1i2 · · · ξip−1i0

]
̸= 0 only if each (unordered) edge of P is traversed even times. Such P

are called even paths, and they exist only when p is even. Hence

E[TrAp] = 0 for odd p,

and from now on we set p = 2s. The following multiple notions give rise to the so-called
Sinai-Soshnikov technique.

Definition 5 (Marked steps). For ℓ = 1, 2, . . . , p, the ℓ-th step iℓ−1 → iℓ of P is called marked
if this step is the odd time the edge {iℓ−1, iℓ} appears.

Observe that step 1 is always marked, and on an even path the total number of marked steps
equals the number of unmarked ones.

Definition 6 (Vertex partition). For k = 0, 1, . . . , s, let

Nk(P) =
{
i ∈ {1, . . . , n} : # marked steps ending at i = k

}
,

and set nk =
∣∣Nk(P)

∣∣. Then necessarily

s∑
k=0

nk = n,
s∑

k=0

k nk = s. (4.1)

We say that P is of type (n0, n1, . . . , ns).

One could expect Nk(P) for large k in the partition to be empty.

Definition 7 (Simple even path). A path P of type

(n0, n1, . . . , ns) = (n− s, s, 0, . . . , 0 )

for which the starting vertex i0 lies in N0(P) is called a simple even path.

One can see immediately that the simple even paths is just double trees. And the truth is
the main contribution is also from these paths, just as it in the semicircle law. Following this
idea, we start our proof.
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Sketch of proof. We shall estimate the number of closed even paths of each type and their
contribution to E[TrAp]. Fix (n0, n1, . . . , ns), we discuss different resources of freedom and
how much they contribute to the limit.

First, the number of ways to decompose the set of n vertices into the (s + 1) subsets
N0,N1, . . . ,Ns with |Nk| = nk is

n!

n0!n1! · · · ns!
.

Fix the initial vertex, whose number of choices differs for different types, and partition {Nk},
freedom also comes from choices of the endpoint of each step. For the order of appearance of
vertices at the marked steps, we have

s!
s∏

k=1

(k!)nk

different ways to write them down. Paths now differ only by (a) the choice of which steps are
marked and (b) the choice of endpoints of the unmarked steps.

Since at each time the number of marked steps is at least the number of unmarked steps,
consider #marked steps−#unmarked steps, one get an injection (which is a bijection for simple
paths) from moments of marked steps to Dyck paths of length p = 2s. The number of
such walks is

Cs =
(2s)!

s! (s+ 1)!
.

With all possibilities mentioned above fixed, we only need to consider the endpoints of
unmarked steps. For simple even paths, there is no such freedom (they must retrace the
marked ones). Hence, the contribution of simple even paths is

1

ns
· n!

(n− s)!s!
· (n− s) · (2s)!

s!(s+ 1)!
· s!
1!

·
(
1

4

)s

=
n√
πs3

(1 + o(1)). (4.2)

For other paths in (n − s, s, 0, . . . , 0 ), we have a ”double loop” when the second half of
the path P repeats the first one. Their contribution is n−s

s times smaller because of different
choices for the initial point, and can be neglected.

If n1 < s, the choice of the end points at the unmarked steps from the vertices of type
Nk, k ≥ 2 may be non-unique. After careful discussion, one can say we have at most 2k
possibilities for the right end of these steps.

For the paths of ( n0, n1, . . . , ns ) type

∣∣E[ξi0i1 . . . ξip−1i0 ]
∣∣ ≤ s∏

k=1

(const · k)k·nk ,

their contribution can be estimated from above by

1

ns
· n!

no!n1! . . . ns!
· n · (2s)!

s!(s+ 1)!
· s!∏s

k=2(k!)
nk

·
s∏

k=2

(2k)k·nk ·
s∏

k=2

(constk)knk

≤ n · (2s)!

s!(s+ 1)!
· 1

4s
.

[
n(n− 1) . . . (n0 + 1)

ns · n1! · · ·ns!
· s!∏s

k=2 (ke
−1)knk

·
s∏

k=2

(
2 const k2

)k·nk 4s

]
.
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Under proper estimate, the sum of the last expression over all non-negative integers n2, n3, . . .,
nk such that

0 <
s∑

k=2

k · nk ≤ s

is not greater than

n · (2s)!

s!(s+ 1)!
·
(
1

4

)s

·

(
exp

(
s∑

k=2

(8e · const · k · s)k

nk−1

)
− 1

)

Since for s ≪ n1/2
s∑

k=2

(8e const k · s)k

nk−1
= O

(
s2

n

)
= o(1).

One could realize that now main contribution is only from (4.2).

The takeaway here is the following proposition, which will also be used in next steps.

Corollary 8. The main contribution to the number of all even paths of length p on the set of
n vertices {1, 2, . . . , n} where p = o

(
n1/2

)
as n → ∞ is given by simple even paths, i.e.

#n,p simple even paths

#n,p even paths
−→
n→∞

1.

5 Following Steps

To prove the central limit theorem, one now analyzes the variance and then higher moments of
TrAp. By considering pairs of paths with a common edge and whose union has even multiplicity
of each edge, which we call them correlated, one can prove:

Theorem 9. Let p = o(
√
n). Then Var (TrAp) ≤ const for all n and Var (TrAp) → 1

π as
n → ∞, p → ∞, p√

n
→ 0.

Sketch of proof. Since

Var(TrAp) = E(TrAp)2 − (ETrAp)2

=
n∑

i0,i1,...,ip−1=1

n∑
j0,j1,...,jp−1=1

1

np

·

(
E

p∏
ℓ=1

ξiℓ−1iℓ ·
p∏

m=1

ξjm−1jm − E
p∏

ℓ=1

ξiℓ−1iℓ · E
p∏

m=1

ξjm−1jm

)

Terms are nonzero only if the pairs are correlated. The goal is to show that the main con-
tribution to the number of correlated pairs and to the variance is due to simply correlated
pairs, i.e., each edge appears in the union of the paths only twice.

To show this, one construct a map from correlated pairs to even paths of length 2p-2 and
argues the number of their preimages, see Figure 1. To study the number of ways to recover
a pair of paths from the even path, one can define the joint edge to be the first edge along
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Figure 1: Construction of even paths of length 2p-2.

the first path that coincides with edge in the second path, and then relate the possibility of
choosing a joint edge from an even path to a Dyck path.

One will show that there are at most 2p ways to choose the starting point and direction
for the second path from any legal even path, and

22p−2 · 2
π
· 1
p
· (1 + o(1))

ways to pick the legal Dyck path and the joint edge.
As a result, the main order of the number of correlated pairs equals to the number of simply

correlated pairs and is
1

π
· np · 22p · (1 + o(1)),

where the np comes from choices of vertices in the even path.
If one takes into account the weights

E
p∏

ℓ=1

ξiℓ−1iℓ ·
p∏

m=1

ξjm−1jm − E
p∏

ℓ=1

ξiℓ−1iℓ · E
p∏

m=1

ξjm−1jm ,

ascribed to the correlated paths gives

Var (TrAp) −→
n→∞

1

π
, 1 ≪ p ≪

√
n.

Finally, we use the method of moments to prove the central limit theorem. One needs
to consider the asymptotics of higher moments. The main idea is rather straightforward and
analogous to what we have done for the variance. Since

E(TrAp − ETrAp)L =
1

n
pL
2

· E
L∏

m=1

 ∑
i
(m)
0 ,i

(m)
1 ,...,i

(m)
p−1

(
p∏

r=1

ξ
i
(m)
r−1,i

(m)
r

− E
p∏

r=1

ξ
i
(m)
r−1,i

(m)
r

) ,

one then needs to consider L coupled closed paths

Pm =
{
i
(m)
0 → i

(m)
1 → · · · → i

(m)
p−1 → i(m)

p

}
, m = 1, . . . , L.

To simplify this problem, one defines the term Cluster of correlated paths and constructs
an even path for each correlated cluster. The argument left now will be almost the same as
what we did for the variance. One can obtain the CLT for finite-dimensional distributions in
the same way. See [SS98] for more details.
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