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1 Why study random matrices?

On the history. Random matrix theory (RMT) is a fascinating field that studies properties of
matrices with randomly generated entries, focusing (at least initially) on the statistical behavior
of their eigenvalues. This theory finds its roots in the domain of nuclear physics through the
pioneering work of Wigner, Dyson, and others [Wig55], [Dys62a], [Dys62b], who utilized it to
analyze the energy levels of complex quantum systems. Other, earlier roots include statistics
[Dix05] and classical Lie groups [Hur97]. Today, RMT has evolved to span a wide array of
disciplines, from pure mathematics, including areas such as integrable systems and representation
theory, to practical applications in fields like data science and engineering.

Classical groups and Lie theory. Random matrices are deeply connected to classical Lie
groups, particularly the orthogonal, unitary, and symplectic groups. This connection emerges
primarily due to the invariance properties of these groups, such as those derived from the Haar
measure. Random matrices significantly impact representation theory, linking to integrals over
matrix groups through character expansions. The symmetry classes of random matrix ensembles,
like the Gaussian Orthogonal (GOE), Unitary (GUE), and Symplectic (GSE), correspond to
respective symmetry groups.

Toolbox. RMT utilizes a broad range of tools ranging across all of mathematics, including
probability theory, combinatorics, analysis (classical and modern), algebra, representation theory,
and number theory. The theory of random matrices is a rich source of problems and techniques
for all of mathematics.

The main content of this course is to explore the toolbox around random matrices, including
going into discrete models like dimers and statistical mechanics. Some of this will be included
in the lectures, and some other topics will be covered in the reading course component, which is
individualized.

Applications. Random matrix theory finds applications across a diverse set of fields. In nu-
clear physics, random matrix ensembles serve as models for complex quantum Hamiltonians,
thereby explaining the statistics of energy levels. In number theory, connections have been drawn
between random matrices and the Riemann zeta function, particularly concerning the distribu-
tion of zeros on the critical line. Wireless communications benefit from random matrix theory
through the analysis of eigenvalue distributions, which helps in understanding channel capacity
in multi-antenna (MIMO) systems. In the burgeoning field of machine learning, random weight
matrices and their spectra are key to analyzing neural networks and their generalization capabil-
ities. High-dimensional statistics and econometrics also draw on random matrix tools for tasks
such as principal component analysis and covariance estimation in large datasets. Additionally,
combinatorial random processes exhibit connections to random permutations, random graphs,
and partition theory, all through the lens of matrix integrals.
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2 Recall Central Limit Theorem

2.1 Central Limit Theorem and examples

We begin by establishing the necessary groundwork for understanding and proving the Central
Limit Theorem. The theorem’s power lies in its remarkable universality: it applies to a wide
variety of probability distributions under mild conditions.

Definition 2.1. A sequence of random variables {Xi}∞i=1 is said to be independent and identically
distributed (iid) if:

• Each Xi has the same probability distribution as every other Xj , for all i, j.

• The variables are mutually independent, meaning that for any finite subset {X1, X2, . . . , Xn},
the joint distribution factors as the product of the individual distributions:

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = P(X1 ≤ x1)P(X2 ≤ x2) · · ·P(Xn ≤ xn).

Theorem 2.2 (Classical Central Limit Theorem). Let {Xi}∞i=1 be a sequence of iid random
variables with finite mean µ = E[Xi] and finite variance σ2 = Var(Xi). Define the normalized
sum

Zn =
1√
n

n∑
i=1

(Xi − µ) . (2.1)

Then, as n → ∞, the distribution of Zn converges in distribution to a normal random variable
with mean 0 and variance σ2, i.e.,

Zn
d−→ N (0, σ2).

Convergence in distribution means

lim
n→∞

P(Zn ≤ x) = P(Z ≤ x) =

∫ x

−∞

1√
2πσ2

e−
t2

2σ2 dt for all x ∈ R, (2.2)

where Z ∼ N (0, σ2) is the Gaussian random variable.

Remark 2.3. For a general random variable instead of Z ∼ N (0, σ2), the convergence in distri-
bution (2.2) holds only for x at which the cumulative distribution function of Z is continuous.
Since the normal distribution is absolutely continuous (has density), the convergence holds for
all x.

Example 2.4. Let {Xi}∞i=1 be a sequence of iid Bernoulli random variables with parameter p,
meaning that each Xi takes the value 1 with probability p and 0 with probability 1 − p. The
mean and variance of each Xi are given by:

µ = E[Xi] = p, σ2 = Var(Xi) = p(1− p).

We also have the distribution of X1 + · · ·+Xn:

P (X1 + · · ·+Xn = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.
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Figure 1: Densities of U1, U1+U2, U1+U2+U3 (where Ui are iid uniform on [0, 1]), and N (0, 1),
normalized to have the same mean and variance.

Introduce the normalized quantity

z =
k − np√
np(1− p)

, (2.3)

and assume that throughout the asymptotic analysis, this quantity stays finite.
Our aim is to show that, for k such that z remains bounded as n → ∞, the following holds:

P(Sn = k) =
1√

2πnp(1− p)
exp
(
−z2

2

)
(1 + o(1)).

For large n, Stirling’s formula gives

m! ∼
√
2πmmme−m, as m → ∞.

Apply Stirling’s approximation to n!, k!, and (n− k)!:

n! ∼
√
2πnnne−n, k! ∼

√
2πk kke−k, (n− k)! ∼

√
2π(n− k) (n− k)n−ke−(n−k).

Thus,(
n

k

)
∼

√
2πnnne−n

√
2πk kke−k

√
2π(n− k) (n− k)n−ke−(n−k)

=
nn

kk(n− k)n−k

1√
2π k(n− k)/n

.

More precisely, one often writes(
n

k

)
∼ 1√

2πnp(1− p)
exp
(
n lnn− k ln k − (n− k) ln(n− k)

)
,

where p ≈ k/n thanks to the fact that z (2.3) is assumed to be finite.
We have

k = np+ z
√
np(1− p).
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Then, consider the second-order Taylor expansion. We have

n lnn− k ln k − (n− k) ln(n− k) ∼ nH − z2

2
,

whereH = −[p ln p+(1−p) ln(1−p)]+c(z; p)/
√
n (for an explicit function c(z; p)) is the “entropy”

term which exactly cancels with the prefactors coming from pk(1− p)n−k.
After combining the approximations from the binomial coefficient and the probability weights,

one arrives at

P(Sn = k) ∼ 1√
2πnp(1− p)

exp

(
−z2

2

)
,

as desired.
(Note that this is a local CLT as opposed to the convergence (2.2) in the classical CLT; but

one can get the latter from the local CLT by integration.)

2.2 Moments of the normal distribution

Proposition 2.5. The moments of a random variable Z ∼ N (0, σ2) are given by:

E[Zk] =

{
0, if k is odd,

σk(k − 1)!! = σk · (k − 1)(k − 3) · · · 1, if k is even.
(2.4)

Proof. We just compute the integrals. Assume k is even (for odd, the integral is zero by symme-
try). Also assume σ = 1 for simplicity. Then

E[Zk] =
1√
2π

∫ ∞

−∞
zke−z2/2 dz.

Applying integration by parts (putting ze−z2/2 under d), we get

E[Zk] =
1√
2π

[
−zk−1e−z2/2

]∞
−∞

+
k − 1√

2π

∫ ∞

−∞
zk−2e−z2/2 dz.

The first term vanishes at infinity (you can verify this using L’Hôpital’s rule), leaving us with:

E[Zk] = (k − 1)E[Zk−2].

This gives us a recursive formula, and completes the proof.

2.3 Moments of sums of iid random variables

Let us now show the CLT by moments. For example, the source is [Bil95, Section 30] or [Fil10].

Remark 2.6. This proof requires an additional assumption that all moments of the random
variables are finite. This is quite a strong assumption, and while the CLT holds without it, this
proof by moments is more algebraic, and will translate to random matrices more directly.
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2.3.1 Computation of moments

Denote Yi = Xi − µ, these are also iid, but have mean 0. We consider

E

( n∑
i=1

Yi

)k
 .

Expanding the k-th power using the multinomial theorem, we obtain:(
n∑

i=1

Yi

)k

=
∑

j1+j2+···+jn=k

Yj1Yj2 . . . Yjn .

Taking the expectation and using linearity, we have:

E

( n∑
i=1

Yi

)k
 =

∑
j1+j2+···+jn=k

E [Yj1Yj2 . . . Yjn ] .

The sum over all j1, . . . , jn with j1 + . . . + jn = k is the number of ways to partition k into n
non-negative integers. We can order these integers, and thus obtain the sum over all partitions
of k into ≤ n parts. Since n is large, we simply sum over all partitions of k. For each partition λ
of k (where k = λ1 + λ2 + . . . + λn and λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0), we must count the number of
distinct multisets of indices (j1, j2, . . . , jn) that yield the same collection {λ1, λ2, . . .}. Then,

E [Yj1Yj2 . . . Yjn ] = mλ1mλ2 . . .mλn ,

where mj = E[Y j ] (recall the identical distribution of Yi). Note that m0 = 1 and m1 = 0. Let us
illustrate this with an example.

Example 2.7. For k = 4, there are only two partitions which have no parts equal to 1: λ = (4)
and λ = (2, 2). The number of ways to get (4) (so that E[Yj1Yj2Yj3Yj4 ] = m4) is to just assign
one of the jp to be 4, this can be done in n ways.

The number of ways to get (2, 2) (so that E[Yj1Yj2Yj3Yj4 ] = m2
2) is to assign two of the jp

to be 2 and the other two to be 0, this can be done in
(
n
2

)
ways. Moreover, there are also 6

permutations of the indices jp = (i, j) which give the same partition (2, 2): (i, i, j, j), (j, j, i, i),
(i, j, i, j), (j, i, j, i), (i, j, j, i), (j, i, i, j). Thus, the total number of ways to get (2, 2) is 6

(
n
2

)
∼ 3n2.

So, we see that there is an n-dependent factor, and a “combinatorial” factor for each partition.

2.3.2 n-dependent factor

Consider first the n-dependent factor. In the case k is even and λ = (2, 2, . . . , 2), the power of n
is nk/2. In the case k is even and λ has at least one part ≥ 3, the power of n is at most nk/2−1,
which is subleading in the limit n → ∞. When k is odd, the “best” we can do (without parts
equal to 1) is going to be λ = (3, 2, . . . , 2) with (k − 1)/2 parts, so the power of n is n(k−1)/2.
This is also subleading in the limit n → ∞.
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2.3.3 Combinatorial factor

Now, we see that we only need to consider the case when k is even and all parts of λ are 2. Then,
the n-dependent factor is

(
n
k/2

)
∼ nk/2/(k/2)!. The combinatorial factor is equal to the number

of ways to partition k into pairs, which is the double factorial:

(k − 1)!! = (k − 1)(k − 3) . . . 1,

times the number of permutations of the k/2 indices which are assigned to the pairs, so (k/2)!.
In particular, for k = 4 this is 6.

2.3.4 Putting it all together

We have as n → ∞:

E

( n∑
i=1

Yi

)k
 = nk/2 (k − 1)!!

(k/2)!
· (k/2)!σk + o(nk/2) = nk/2(k − 1)!!σk + o(nk/2).

Now, we need to consider the normalization of the sum
∑n

i=1 Yi by
√
n:

E

( 1√
n

n∑
i=1

Yi

)k
 =

1

nk/2
E

( n∑
i=1

Yi

)k
 = (k − 1)!!σk + o(1).

Therefore, the moments of Zn (2.1) converge to the moments of the standard normal distribution.

2.4 Convergence in distribution

Is convergence of moments enough to imply convergence in distribution? Not necessarily. First,
note that the functions x 7→ xk are not even bounded on R.

A sufficient condition for convergence in distribution is found in the classical method of mo-
ments in probability theory [Bil95, Theorem 30.2]. This theorem states that if the limiting
distribution X is uniquely determined by its moments, then convergence in moments implies
convergence in distribution.

The normal distribution is indeed uniquely determined by its moments (Problem A.5), so the
CLT holds in this case, provided that the original iid random variables Xi have finite moments
of all orders.

3 Random matrices and semicircle law

We now turn to random matrices.

3.1 Where can randomness in a matrix come from?

The study of random matrices begins with understanding how randomness can be introduced
into matrix structures. We consider three primary sources:
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1. iid entries: The simplest form of randomness comes from filling matrix entries indepen-
dently with samples from a fixed probability distribution. For an n × n matrix, this gives
us n2 independent random variables. If we do not impose any additional structure on the
matrix, then the eigenvalues will be complex. So, often we consider real symmetric, complex
Hermitian, or quaternionic matrices with symplectic symmetry.1

2. Correlated entries: In many physical systems, especially those modeling local interac-
tions, matrix entries are not independent but show correlation patterns. Common examples
include:

• Band matrices, where entries become negligible far from the diagonal

• Matrices with correlation decay based on the distance between indices

• Structured random matrices arising from specific physical models

• Sparse matrices, where most entries are zero

3. Haar measure on matrix groups: Randomness can come from considering matrices
sampled according to the Haar measure on a compact matrix group, for example, the
orthogonal O(n), unitary U(n), or symplectic group Sp(n).2 One can think of this as a
generalization of the uniform distribution (Lebesgue measure) on the unit circle in C, or
a unit sphere in Rn. One can also mix and match: one of the most interesting families of
random matrices is the one with constant eigenvalues, but random eigenvectors:

A = UDλU
†, U ∈ U(n), U ∼ Haar.

Here Dλ is a diagonal matrix with constant eigenvalues λ = (λ1, . . . , λn). The random
matrix A is the “uniform” random variable taking values in the set of all Hermitian matrices
with fixed real eigenvalues λ. Here we may assume that λ1 ≥ . . . ≥ λn, since the unitary
conjugation can permute the eigenvalues.

3.2 Real Wigner matrices

Definition 3.1 (Real Wigner Matrix). An n × n random matrix W = Wn = (Xij)1≤i,j≤n is
called a real Wigner matrix if:

1. W is symmetric: Xij = Xji for all i, j;

2. The upper triangular entries {Xij : 1 ≤ i ≤ j ≤ n} are independent;

1Real symmetric means A⊤ = A, complex Hermitian means A† = A (conjugate transpose). Let us briefly
discuss the quaternionic case. It can be modeled over C. A quaternion q = a+ b i+ c j+ dk can be represented by
the complex 2× 2 matrix

q 7−→
(

a+ ib c+ id
−c+ id a− ib

)
.

The entries a, b, c, d for the quaternion matrix case must be real, and the matrix A of size 2n× 2n should also be
Hermitian in the usual complex sense.

2The orthogonal and unitary groups are defined in the usual way, by OO⊤ = O⊤O = I and UU† = U†U = I,
respectively. The group Sp(n) is the compact real form of the full symplectic group Sp(2n,C), consisting of 2n×2n
matrices A such that A⊤JA = J , where J is the skew-symmetric form.
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3. The diagonal entries {Xii} are iid real random variables with mean 0 and variance σd;

4. The upper triangular entries {Xij : i < j} are iid (possibly with a distribution different
from the diagonal entries) real random variables with mean 0 and variance σ;

5. (optional, but we assume this) All entries have finite moments of all orders.

Example 3.2 (Gaussian Wigner Matrices, Gaussian Orthogonal Ensemble (GOE)). Let W be
a real Wigner matrix where:

• Diagonal entries Xii ∼ N (0, 2);

• Upper triangular entries Xij ∼ N (0, 1) for i < j.

We can model W as (Y + Y ⊤)/
√
2, where Y is a matrix with iid Gaussian entries Yij ∼ N (0, 1).

The matrix distribution of W is called the Gaussian Orthogonal Ensemble (GOE ).

Remark 3.3 (Wishart Matrices). There are other ways to define random matrices, most notably,
sample covariance matrices. Let A = [ai,j ]

n,m
i,j=1 be an n×m matrix (n ≤ m), where entries are iid

real random variables with mean 0 and finite variance. Then M = AA⊤ is a positive symmetric
random matrix of size n× n. It almost surely has full rank.

3.3 Empirical spectral distribution

For an arbitrary random matrix of size n× n with real eigenvalues, the empirical spectral distri-
bution (ESD) is defined as the random probability measure on R:

µn =
1

n

n∑
i=1

δλi
, (3.1)

which puts point masses of size 1/n at the eigenvalues λi of the matrix.
If you sample the ESD for a large real Wigner matrix, and take a histogram (to cluster the

eigenvalues into boxes), you will see the semi-circular pattern. This pattern does not change
over several samples. Hence, one can conjecture that the ESD (3.1) converges to a nonrandom
measure, after rescaling.

We can guess the rescaling by looking at the first two moments of the ESD. The first moment
is ∫

R
xµn(dx) =

1

n

n∑
i=1

λi =
1

n
Tr(W ) =

1

n

n∑
i=1

Xii, (3.2)

and this sum has mean zero (and small variance), so it converges to zero. The second moment is∫
R
x2 µn(dx) =

1

n

n∑
i=1

λ2
i =

1

n
Tr(W 2) =

1

n

n∑
i,j=1

X2
ij . (3.3)

This sum has mean ∼ σ2n2, so even normalized by n, it still goes to infinity. But, if we normalize
the matrix as 1√

n
W , then the second moment becomes bounded, and one can convince oneself

that the ESD of the normalized Wishart matrix has a limit. Indeed, this is the case:
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Theorem 3.4 (Wigner’s Semicircle Law). Let W be a real Wigner matrix of size n × n (with
off-diagonal entries having a fixed variance σ2, independent of n). Then as n → ∞, the ESD of
W/(σ

√
n) converges in distribution to the semicircular law:

νn :=
1

n

n∑
i=1

δλi/
√
n −→ µsc, (3.4)

where µsc is the semicircular distribution with density with respect to the Lebesgue measure:

µsc(dx) :=
1

2π

√
4− x21|x|≤2dx. (3.5)

Remark 3.5. The convergence in (3.4) may mean either weakly in probability or weakly almost
surely. The first notion, weak convergence in probability, means that for every bounded continu-
ous function f , we have ∫

R
f(x) νn(dx) −→

∫
R
f(x)µsc(dx), n → ∞, (3.6)

where in (3.6) the convergence is in probability. Indeed, the left-hand side of (3.6) is a random
variable, so we need to qualify which sense of convergence we mean.

The weakly almost sure convergence means that the convergence in (3.6) holds for almost
all realizations of the random matrix W , that is, for every bounded continuous function f , the
random variable

∫
R f(x) νn(dx) converges almost surely to

∫
R f(x)µsc(dx).

Remark 3.6. There exists a version of the limiting ESD for the Wishart matrices (Remark 3.3).
In this case, the limiting distribution is the Marchenko-Pastur law [MP67].

3.4 Expected moments of traces of random matrices

The main computation in the proof of Theorem 3.4 is the computation of expected moments of
the ESD. This computation of moments is somewhat similar to the one in the proof of the CLT
by moments, but has its own random matrix flavor.

Definition 3.7 (Normalized Moments). For each k ≥ 1, the normalized k-th moment of the
empirical spectral distribution of Wn/

√
n is given by

m
(n)
k =

∫
R
xk νn(dx) =

1

nk/2+1
Tr(W k).

Our first goal is to study the asymptotic behavior of E[m(n)
k ] as n → ∞ for each fixed k ≥ 1,

just like we did in (3.2)–(3.3) for k = 1, 2:

E[m(n)
1 ] = 0, E[m(n)

2 ] → σ2.

Note that E[m(n)
2 ] is not exactly equal to σ2 because of the presence of the diagonal elements

which have a different distribution. In general, we will see that the contribution of the diagonal
elements to the moments is negligible in the limit n → ∞.
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Lemma 3.8 (Convergence of Expected Moments). For each fixed k ≥ 1, we have

lim
n→∞

E[m(n)
k ] =

{
0 if k is odd,

σkCk/2 if k is even,

where Cm = 1
m+1

(
2m
m

)
is the m-th Catalan number.

The even moments are scaled by powers of σ just as in the case k = 2, while the odd
moments vanish due to the symmetry of the limiting distribution around zero. As we will see, the
appearance of Catalan numbers is not accidental, but it is due to the underlying combinatorics.

Proof of Lemma 3.8. The trace of W k expands as a sum over all possible index sequences:

Tr(W k) =
n∑

i1,...,ik=1

Xi1i2Xi2i3 · · ·Xik−1ikXiki1 . (3.7)

Due to independence and the fact that E[Xij ] = 0 for all i, j, the only nonzero contributions come
from index sequences where each matrix element appears least twice.

As in the CLT proof, there is a power-n factor and a combinatorial factor.
For k odd, let us count the power of n first. As in the CLT proof, the maximum power

comes from index sequences where all matrix elements appear exactly twice except for one which
appears three times. Indeed, this corresponds to the maximum freedom of choosing k indices
among the large number n of indices, and thus to the maximum power of n. This maximum
power of n is n1+⌊k/2⌋ (note that there is an extra factor n compared to the CLT proof, as now
we have ∼ n2 random variables in the matrix instead of n). Since this is strictly less than the

normalization nk/2+1 in m
(n)
k , the term with odd k vanish in the limit n → ∞.

Assume now that k is even. Then the maximum power of n comes from index sequences where
each matrix element appears exactly twice. This power of n is nk/2+1, which exactly matches the

normalization in m
(n)
k .

It remains to count the combinatorial factor, assuming that k is even. For each term in the
trace expansion, we can represent the sequence of indices (i1, . . . , ik) as a directed closed path
with vertices {1, . . . , n} and edges given by the matrix entries Xiaia+1 . For example, if k = 4 and
we have a term X12X23X34X41, this corresponds to the path 1 → 2 → 3 → 4 → 1. Recall that
our path must have each matrix entry exactly twice (within the symmetry Xij = Xji), and the
path must be closed. The condition that each edge appears exactly twice means that if we forget
the direction of the edges and the multiplicities, we must get a tree, with k/2 edges and k/2 + 1
vertices. The complete justification of this counting is the problem in Problem A.9.

The n-powers counting implies that the combinatorial factor (for even k) is equal to σk times
the number of rooted (planar) trees with k/2 edges. The rooted condition comes from the fact
that we are free to fix the starting point of the path to be 1 (this ambiguity is taken into account
by the power-n factor).

In Problem A.10, we show that the number of these rooted trees is the k/2-th Catalan number
Ck/2. This completes the proof of Lemma 3.8.
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3.5 Immediate next steps

The proof of Theorem 3.4 is continued in the next Lecture 2. Immediate next steps are:

1. Show that the number of rooted trees with k/2 edges is the k/2-th Catalan number, and
give the exact formula for the Catalan numbers.

2. Compute the moments of the semicircular distribution.

3. Make sure that the moment computation suffice to show the weak in probability convergence
of the ESD to the semicircular law.

A Problems (due 2025-02-13)

Each problem is a subsection (like Problem A.1), and may have several parts.

A.1 Normal approximation

1. In Figure 1, which color is the normal curve and which is the sum of three uniform random
variables?

2. Show that the sum of 12 iid uniform random variables on [−1, 1] (without normalization)
is approximately standard normal.

3. Find (numerically is okay) the maximum discrepancy between the distribution of the sum
of 12 iid uniform random variables on [−1, 1] and the standard normal distribution:

sup
x∈R

∣∣∣∣∣P
(

12∑
i=1

Ui ≤ x

)
− P (Z ≤ x)

∣∣∣∣∣ .
A.2 Convergence in distribution

Convergence in distribution Xn → X for real random variables Xn and X means, by definition,
that

E[f(Xn)] → E[f(X)]

for all bounded continuous functions f . Show that convergence in distribution is equivalent to
the condition outlined in (2.2):

lim
n→∞

P(Xn ≤ x) = P(X ≤ x)

for all x at which the cumulative distribution function of X is continuous.

A.3 Moments of sum justification

Justify the computations of the power of n in Section 2.3.2.
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A.4 Distribution not determined by moments

Show that the log-normal random variable eZ (where Z ∼ N (0, 1)) is not determined by its
moments.

A.5 Uniqueness of the normal distribution

Show that the normal distribution is uniquely determined by its moments.

A.6 Quaternions

Show that the 2 × 2 matrix representation of a quaternion given in Footnote 1 indeed satisfies
the quaternion multiplication rules. Hint: Use linearity and distributive law.

A.7 Ensemble UDλU
†

Let U be the random Haar-distributed unitary matrix of size N × N . Let Dλ be the diagonal
matrix with constant real eigenvalues λ = (λ1, . . . , λN ), λ1 ≥ . . . ≥ λN . Let us fix λ to be, say,
λ = (1, 1, . . . , 1, 0, 0, . . . , 0), for some proportion of 1’s and 0’s (you can start with half ones and
half zeros).

Use a computer algebra system to sample the eigenvalues of the matrix obtained from UDλU
†

by taking only its top-left corner of size k × k, where k = 1, 2, . . . , N . For a fixed k, let λ
(k)
1 ≥

. . . ≥ λ
(k)
k be the eigenvalues of the top-left corner of size k × k. Plot the two-dimensional array{

(λ
(k)
i , k) : i = 1, . . . , k, k = 1, . . . , N

}
⊂ R× Z≥1.

A.8 Invariance of the GOE

Show that the distribution of the GOE is invariant under conjugation by orthogonal matrices:

P(OWO⊤ ∈ A) = P(W ∈ A)

for all orthogonal matrices O and Borel sets A.

A.9 Counting n-powers in the real Wigner matrix

Show that in the expansion of the expected trace of the k-th power of the real Wigner matrix,
the maximum power of n is k/2 + 1 for even k and less for odd k. For even k, the power k/2 + 1
comes from index sequences where each off-diagonal matrix element appears exactly twice, and
no diagonal elements are present.

A.10 Counting trees

Show that the number of rooted trees with m edges is the m-th Catalan number:

Cm =
1

m+ 1

(
2m

m

)
.
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[Hur97] A. Hurwitz, Über die Erzeugung der Invarianten durch Integration, Nachr. Ges. Wiss. Göttingen (1897),

71–90. ↑2
[MP67] V. Marchenko and L. Pastur, Distribution of eigenvalues in certain sets of random matrices, Math. USSR

Sb. 1 (1967), 457–483. ↑10
[Wig55] E. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Annals of Mathematics

(1955), 548–564. ↑2

L. Petrov, University of Virginia, Department of Mathematics, 141 Cabell
Drive, Kerchof Hall, P.O. Box 400137, Charlottesville, VA 22904, USA

E-mail: lenia.petrov@gmail.com

14

http://www.cs.toronto.edu/~yuvalf/CLT.pdf

	Why study random matrices?
	Recall Central Limit Theorem
	Central Limit Theorem and examples
	Moments of the normal distribution
	Moments of sums of iid random variables
	Computation of moments
	n-dependent factor
	Combinatorial factor
	Putting it all together

	Convergence in distribution

	Random matrices and semicircle law
	Where can randomness in a matrix come from?
	Real Wigner matrices
	Empirical spectral distribution
	Expected moments of traces of random matrices
	Immediate next steps

	Problems (due 2025-02-13)
	Normal approximation
	Convergence in distribution
	Moments of sum justification
	Distribution not determined by moments
	Uniqueness of the normal distribution
	Quaternions
	Ensemble UDU
	Invariance of the GOE
	Counting n-powers in the real Wigner matrix
	Counting trees


