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1 Recap

We are working on the Wigner semicircle law.

1. Wigner matrices W : real symmetric random matrices with iid entries Xij , i > j (mean 0,
variance σ2); and iid diagonal entries Xii (mean 0, some other variance and distribution).

2. Empirical spectral distribution (ESD)

νn =
1

n

n∑
i=1

δλi/
√
n,

which is a random probability measure on R.

3. Semicircle distribution µsc:

µsc(dx) =
1

2π

√
4− x2 dx, x ∈ [−2, 2].

4. Computation of expected traces of powers of W (with variance 1). We showed that∫
R
xk νn(dx) → # {rooted planar trees with k/2 edges} .

Remark 1.1. If the off-diagonal elements of the matrix have variance σ2, then the semicircle
distribution should be scaled to be supported on [−2σ, 2σ]. We assume that the variance of the
off-diagonal elements is 1 in most arguments throughout the lecture.

2 Two computations

First, we finish the combinatorial part, and match the limiting expected traces of powers of W
to moments of the semicircle law.

2.1 Moments of the semicircle law

We also need to match the Catalan numbers to the moments of the semicircle law. Let k = 2m,
and we need to compute the integral∫ 2

−2
x2m

1

2π

√
4− x2 dx.

By symmetry, we write: ∫ 2

−2
x2mρ(x) dx =

2

π

∫ 2

0
x2m

√
4− x2 dx.

Using the substitution x = 2 sin θ, we have dx = 2 cos θ dθ. The integral becomes:

2

π

∫ π/2

0
(2 sin θ)2m(2 cos θ)(2 cos θ dθ) =

22m+2

π

∫ π/2

0
sin2m θ cos2 θ dθ.
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Using cos2 θ = 1− sin2 θ, we split the integral:

22m+2

π

(∫ π/2

0
sin2m θ dθ −

∫ π/2

0
sin2m+2 θ dθ

)
.

Using the standard formula (cf. Problem B.1)∫ π/2

0
sin2n θ dθ =

π

2

(2n)!

22n(n!)2
, (2.1)

we compute each term:

22m+2

π

(
π

2

(2m)!

22m(m!)2
− π

2

(2m+ 2)!

22m+2((m+ 1)!)2

)
.

After simplification, this becomes Cm, the m-th Catalan number.

2.2 Counting trees and Catalan numbers

Throughout this section, for a random matrix trace moment of order k, we use m = k/2 as our
main parameter. Note that m can be arbitrary (not necessarily even).

Definition 2.1 (Dyck Path). A Dyck path of semilength m is a sequence of 2m steps in the
plane, each step being either (1, 1) (up step) or (1,−1) (down step), starting at (0, 0) and ending
at (2m, 0), such that the path never goes below the x-axis. We denote an up step by U and a
down step by D.

Definition 2.2 (Rooted Plane Tree). A rooted plane tree is a tree with a designated root vertex
where the children of each vertex have a fixed left-to-right ordering. The size of such a tree is
measured by its number of edges, which we denote by m.

Definition 2.3 (Catalan Numbers). The sequence of Catalan numbers {Cm}m≥0 is defined re-
cursively by:

C0 = 1, Cm+1 =
m∑
j=0

CjCm−j for m ≥ 0. (2.2)

Alternatively, they have the closed form1

Cm =
1

m+ 1

(
2m

m

)
=

(
2m

m

)
−
(

2m

m+ 1

)
. (2.3)

These numbers appear naturally in the moments of random matrices, where m = k/2 for trace
moments of order k.

Lemma 2.4. Formulas (2.2) and (2.3) are equivalent.

1See Problem B.4 for a combinatorial proof of the second inequality.
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Proof. One can check that the closed form satisfies the recurrence relation by direct substitu-
tion. The other direction involves generating functions. Namely, (2.2) can be rewritten for the
generating function

C(z) =

∞∑
m=0

Cmzm

as
C(z) = 1 + zC(z)2.

Solving for C(z), we get

C(z) =
1±

√
1− 4z

2z
. (2.4)

We need to pick the solution which is nonsingular at z = 0, and it corresponds to the minus sign.
Taylor expansion of the right-hand side of (2.4) at z = 0 gives the closed form.

Remark 2.5. Catalan numbers enumerate many (too many!) combinatorial objects. For a
comprehensive treatment, see [Sta15].

Proposition 2.6 (Dyck Path–Rooted Tree Correspondence). For any m, there exists a bijection
between the set of Dyck paths of semilength m and the set of rooted plane trees with m edges.

Proof. Given a Dyck path of semilength m, we build the corresponding rooted plane tree as
follows (see Figure 1 for an illustration):

1. Start with a single root vertex

2. Read the Dyck path from left to right:

• For each up step (U), add a new child to the current vertex

• For each down step (D), move back to the parent of the current vertex

3. The order of children is determined by the order of up steps

This is clearly a bijection, and we are done.

x

y

UUDD

1

2

3

x

y

UDUD

1

2 3

Figure 1: The two possible Dyck paths of semilength m = 2 and their corresponding rooted plane
trees.
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It remains to show that the Dyck paths or rooted plane trees are counted by the Catalan
numbers, by verifying the recursion (2.2) for them. By Proposition 2.6, it suffices to consider
only Dyck paths.

Proposition 2.7. The number of Dyck paths of semilength m satisfies the Catalan recurrence
(2.2).

Proof. We need to show that the number of Dyck paths of semilength m+1 is given by the sum
in the right-hand side of (2.2). Consider a Dyck path of semilength m+ 1, and let the first time
it returns to zero be at semilength j + 1, where j = 0, . . . ,m. Then the first and the (2j + 1)-st
steps are, respectively, U and D. From 0 to 2j + 2, the path does not return to the x-axis, so
we can remove the first and the (2j + 1)-st steps, and get a proper Dyck path of semilength j.
The remainder of the Dyck path is a Dyck path of semilength m − j. This yields the desired
recurrence.

x

y

Figure 2: Illustration of a Dyck path decomposition for the proof of Proposition 2.7.

3 Analysis steps in the proof

We are done with combinatorics, and it remains to justify that the computations lead to the
desired semicircle law from Lecture 1.

Let us remember that so far, we showed that

lim
n→∞

1

nk/2+1
E
[
TrW k

]
=

{
σ2mCm if k = 2m is even,

0 if k is odd.

Here, W is real Wigner (unnormalized) with mean 0, where its off-diagonal entries are iid with
variance σ2.

3.1 The semicircle distribution is determined by its moments

We use (without proof) the known Carleman’s criterion for the uniqueness of a distribution by
its moments.
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Proposition 3.1 (Carleman’s criterion [ST43, Theorem 1.10], [Akh65]). Let X be a real-valued
random variable with moments mk = E[Xk] of all orders. If

∞∑
k=1

(m2k)
−1/(2k) = ∞, (3.1)

then the distribution of X is uniquely determined by its moments (mk)k≥1.

Remark 3.2. Note that we do not assume that the measure is symmetric, but use only even
moments for the Carleman criterion. Indeed, in determining uniqueness, the decisive aspect
is how the distribution mass “escapes” to ±∞. Since

∫
|x|ndµ(x) can be bounded by twice∫

x2⌊n/2⌋dµ(x) (roughly speaking), controlling
∫
x2ndµ(x) also controls

∫
|x|ndµ(x). Thus, one

does not need to worry about positive or negative signs in x; the even powers handle both sides
of the real line at once.

Moreover, the convergence of (3.1), as for any infinite series, is only determined by arbitrarily
large moments, for the same reason.

Remark 3.3. By the Stone-Wierstrass theorem, the semicircle distribution on [−2, 2] is unique
among distributions with an arbitrary, but fixed compact support with the moments σ2kCk.
However, we need to guarantee that there are no distributions on R with the same moments.

Now, the moments satisfy the asymptotics

m2k = Ckσ
2k ∼ 4k

k3/2
√
π
σ2k,

so
∞∑
k=1

(m2k)
−1/(2k) ∼

∞∑
k=1

(
k3/2

√
π

4k

)1/2k

σ−1.

The k-th summands converges to 1/(2σ), so the series diverges.

Remark 3.4. See also Problem A.4 from Lecture 1 on an example of a distribution not deter-
mined by its moments.

3.2 Convergence to the semicircle law

Recall [Bil95, Theorem 30.2] that convergence of random variables in moments plus the fact
that the limiting distribution is uniquely determined by its moments implies convergence in
distribution. However, we need weak convergence in probability or almost surely (see the previous
Lecture 1). which deals with random variables∫

R
f(x) νn(dx), f ∈ Cb(R),

and we did not compute the moments of these random variables.
To complete the argument, let us show that for each fixed integer k ≥ 1, we have almost sure

convergence of the moments (of a random distribution, so that the Yn,k’s are random variables):

Yn,k :=

∫
R
xk νn(dx)

a.s.−−−→
n→∞

mk, n → ∞,
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where mk are the moments of the semicircle distribution, and νn is the ESD corresponding to the
scaling of the eigenvalues as λi/

√
n.

As typical in asymptotic probability, we not only need the expectation of Yn,k, but also their
variances, to control the almost sure convergence. Recall that we showed E(Yn,k) → mk. Let us
assume the following:

Proposition 3.5 (Variance bound). For each fixed integer k ≥ 1 and large enough n, we have

Var(Yn,k) ≤
mk

n2
.

We will prove Proposition 3.5 in Section 4 below. Let us finish the proof of convergence to
the semicircle law modulo Proposition 3.5.

3.2.1 A concentration bound and the Borel–Cantelli lemma

From Chebyshev’s inequality,

P
(∣∣Yn,k − E[Yn,k]

∣∣ ≥ n− 1
4

)
≤ Var[Yn,k]

√
n = O(n− 3

2 ),

where in the last step we used Proposition 3.5.
Hence the probability that |Yn,k − E[Yn,k]| > n− 1

4 is summable in n. By the Borel–Cantelli
lemma, with probability 1 only finitely many of these events occur. Since E[Yn,k] → mk, we
conclude ∣∣Yn,k −mk

∣∣ ≤
∣∣Yn,k − E[Yn,k]

∣∣+ ∣∣E[Yn,k]−mk

∣∣ −−−→
n→∞

0 almost surely.

3.2.2 Tightness of {νn} and subsequential limits

Since |Yn,k| =
∣∣∫ xk νn(dx)

∣∣ stays almost surely bounded for each k, one readily checks (Problem
B.5) that almost surely, for each fixed k,

νn
(
{x : |x| > M}

)
≤ C

Mk
. (3.2)

By choosing k large, we see that νn puts arbitrarily little mass outside any large interval [−m,m].
Thus, the sequence of probability measures {νn} is tight. By Prokhorov’s theorem [Bil95, The-
orem 25.10], there exists a subsequence νnj converging weakly to some probability measure ν∗.
We will now characterize all subsequential limits ν∗ of νn.

3.2.3 Characterizing the limit measure

We claim that ν∗ = µsc, the semicircle distribution (and in particular, this measure is not random).
Indeed, fix k. Since xk is a bounded function on a sufficiently large interval, and νnj → ν∗ weakly,
we have ∫

R
xk νnj (dx) →

∫
R
xk ν∗(dx).
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On the other hand, we have already shown∫
R
xk νnj (dx) = Ynj ,k

a.s.−−−→
j→∞

mk =

∫
R
xk µsc(dx).

Thus ∫
R
xk ν∗(dx) = mk =

∫
R
xk µsc(dx) for all k ≥ 1.

By Proposition 3.1, the measure ν∗ is uniquely determined by its moments. Hence ν∗ must
coincide with µsc.

Remark 3.6. In Sections 3.2.2 and 3.2.3 we tacitly assumed that we choose an elementary
outcome ω, and view νn as measures depending on ω. Then, since the convergence of moments
is almost sure, ω belongs to a set of full probability. The limiting measure ν∗ must coincide with
µsc for this ω, and thus, ν∗ is almost surely nonrandom.

Any subsequence of {νn} has a further sub-subsequence convergent to ν. By a standard
diagonal argument, this forces νn → ν in the weak topology (almost surely). This completes the
proof that the ESD of our Wigner matrix (rescaled by

√
n) converges to the semicircle distribution

weakly almost surely, modulo Proposition 3.5. (See also Problem B.6 for the weakly in probability
convergence.)

4 Proof of Proposition 3.5: bounding the variance

There is one more “combinatorial” step in the proof of the semicircle law: we need to show that
the variance of the moments of the ESD is bounded by mk/n

2.
Recall that

Yn,k =

∫
R
xk νn(dx) =

1

n1+ k
2

n∑
i1,...,ik=1

XI , where XI = Xi1i2Xi2i3 · · ·Xiki1 .

Here we use the notation I for the multi-index (i1, . . . , ik), and throughout the computation
below, we use the notation I ∈ [n]k, where [n] = {1, . . . , n}. We have

Var
(
Yn,k

)
=

1

n2+k
Var
( ∑
I∈[n]k

XI

)
=

1

n2+k

∑
I,J∈[n]k

Cov
(
XI , XJ

)
.

We claim that the sum of all covariances is bounded by a constant times nk, which then implies
Var
(
Yn,k

)
≤ const · nk/n2+k = O

(
1
n2

)
.

Step 1. Identifying when Cov
(
XI , XJ

)
can be nonzero. For each k-tuple I = (i1, i2, . . . , ik) ∈

[n]k, the product
XI = Xi1i2 Xi2i3 . . . Xiki1

is the product of the entries of our Wigner matrix corresponding to the directed “edges” (i1 →
i2), (i2 → i3), . . . , (ik → i1). Similarly, XJ is determined by the edges of another closed directed
walk J .
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1. If I and J use disjoint collections of matrix entries, then XI and XJ are independent, and
hence Cov(XI , XJ) = 0.

2. If there is an edge (say, Xi1i2) which appears only once in exactly one of I or J but not
both, then that edge factor is independent and forces Cov(XI , XJ) = 0 since E[Xi1i2 ] = 0.
Indeed, for example if Xi1i2 appears only in XI , then

E [XI ] = E [Xi1i2 ] · E [other factors] = 0, E
[
XIXJ

]
= E[Xi1i2 ] · E

[
other factors

]
= 0.

Thus, the only way we could get a nonzero covariance is if every edge that appears in I ∪ J
appears at least twice overall. Graphically, let us represent each k-tuple I by a directed closed
walk in the complete graph on [n]. The union I ∪J must be a connected subgraph in which every
directed edge has total multiplicity ≥ 2.

Step 2. Counting the contributions to the sum. Denote by q = |V (I ∪ J)| the number
of distinct vertices involved in the union I ∪ J . In principle, there are O(nq) ways to choose q
vertices from [n]. Then we need to specify how the edges form two closed walks of length k.

We split into two cases:

1. q ≤ k. Then the n-power in the sum over I, J is at most nk, which yields the overall
contribution O(n−2), as desired.

2. q ≥ k + 1. Ignoring directions and multiplicities, we see that the subgraph corresponding
to I∪J contains at most k edges. Since q ≥ k+1, we must have q = k+1 (by connectedness).
Thus, I∪J is a double tree. Since I and J are subsets of this double tree and q = k+1, they
also must be double trees. Thus, there exists an edge which appears in both I and J , and
at least twice in I and twice in J , so four times in I ∪ J . This contradicts the assumption
that I ∪ J is a double tree.

This implies that there are no leading contributions to the sum when q ≥ k + 1.

Combining these two cases, we conclude that the total number of pairs (I, J) with nonzero
covariance is of order at most nk, This yields the desired bound on the variance, and completes
the proof of Proposition 3.5.

With that, we are done with the Wigner semicircle law proof for real Wigner matrices (with
weakly almost sure convergence; see Lecture 1 for the definitions).

Also, see Problem B.7 for the complex case of the Wigner semicircle law.

5 Remark: Variants of the semicircle law

Let us briefly outline a few examples of the semicircle law for real/complex Wigner matrices
which relax the iid conditions and the conditions that all moments of the entries must be finite.
This list is not comprehensive, it is presented as an illustration of the universality / robustness
of the semicircle law.

Theorem 5.1 (Gaussian β-Ensembles [Joh98], [For10]). Let β > 0, and consider an n×n random
matrix ensemble with joint eigenvalue density:

pn(λ1, . . . , λn) =
1

Zn,β
exp

(
−β

4

n∑
i=1

λ2
i

) ∏
1≤i<j≤n

|λi − λj |β (5.1)

9
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where Zn,β is the normalization constant.2 Then the ESD of the normalized eigenvalues λi/
√
n

converges weakly almost surely to the semicircle law.

Theorem 5.2 (Correlated entries [SSB05]). Let Wn =
(

1√
n
Xpq

)
1≤p,q≤n

be a sequence of n × n

Hermitian random matrices where:

1. The entries Xpq are complex random variables that are:

• Centered: E[Xpq] = 0,

• Unit variance: E[|Xpq|2] = 1,

• Moment bound: sup
n

max
p,q=1,...,n

E
[
|Xpq|k

]
< ∞ for all k ∈ N.

2. There exists an equivalence relation ∼n on pairs of indices (p, q) in {1, . . . , n}2 such that:

• Entries Xp1q1 , . . . , Xpjqj are independent when (p1, q1), . . . , (pj , qj) belong to distinct
equivalence classes.

• The relation satisfies the following bounds:

(a) maxp#
{
(q, p′, q′) ∈ {1, . . . , n}3 | (p, q) ∼n (p′, q′)

}
= o(n2),

(b) maxp,q,p′ #
{
q′ ∈ {1, . . . , n} | (p, q) ∼n (p′, q′)

}
≤ B for some constant B,

(c) #
{
(p, q, p′) ∈ {1, . . . , n}3 | (p, q) ∼n (q, p′) and p ̸= p′

}
= o(n2).

3. The matrices are Hermitian: Xpq = Xqp. In particular, (p, q) ∼n (q, p), and this is consis-
tent with the conditions on the equivalence relation.

Then, as n → ∞, the ESD of Wn converges to the semicircle law.

There are variants of this theorem without the assumption that all moments of the entries
are finite.

Theorem 5.3 ([BGK16]). Let Mn = [Xij ]
n
i,j=1 be a symmetric n×n matrix with random entries

such that:

• The off-diagonal elements Xij, for i < j, are i.i.d. random variables with E[Xij ] = 0 and
E[X2

ij ] = 1.

• The diagonal elements Xii are i.i.d. random variables with E[Xii] = 0 and a finite second
moment, E[X2

ii] < ∞, for 1 ≤ i ≤ n.

Then the ESD of Mn, normalized by
√
n, converges to the semicircle law.

Theorem 5.4. For each n ∈ Z+, let Mn = [Xij ]
n
i,j=1 be a symmetric n × n matrix with real

random entries satisfying the following conditions:

• The entries Xij are independent (but not necessarily identically distributed) random vari-
ables with E[Xij ] = 0 and E[X2

ij ] = 1.

2For β = 1, 2, 4, this is the joint eigenvalue density of the Gaussian Orthogonal, Unitary, and Symplectic
Ensembles, respectively. For general β, there is no invariant random matrix distribution (while the eigenvalue
density (5.1) makes sense), and we can still treat all the β cases in a unified manner.
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• There exists a constant C such that supi,j,n E
[
|Xij |4

]
< C.

Then the ESD of Mn, normalized by
√
n, converges to the semicircle law almost surely. The

second condition can also be replaced by a uniform integrability condition on the variances.

Theorem 5.5 (For example, see [SB95]). Let Mn = [Xij ]
n
i,j=1 be a symmetric n× n matrix with

random entries. Assume that the expected matrix E[Mn] has rank r(n), where

lim
n→∞

r(n)

n
= 0.

Additionally, suppose E[Xij ] = 0, Var(Xij) = 1, and

sup
i,j,n

E
[
|Xij − E[Xij ]|4

]
< ∞.

Then the ESD of Mn, normalized by
√
n, converges to the semicircle law almost surely.

B Problems (due 2025-02-15)

B.1 Standard formula

Prove formula (2.1): ∫ π/2

0
sin2n θ dθ =

π

2

(2n)!

22n(n!)2
.

B.2 Tree profiles

Show that the expected height of a uniformly random Dyck path of semilength m is of order
√
m.

B.3 Ballot problem

Suppose candidate A receives p votes and candidate B receives q votes, where p > q ≥ 0. In how
many ways can these votes be counted such that A is always strictly ahead of B in partial tallies?

B.4 Reflection principle

Show the equality

Cm =

(
2m

m

)
−
(

2m

m− 1

)
,

where Cm counts the number of lattice paths from (0, 0) to (2m, 0) with steps (1, 1) and (1,−1)
that never go below the x-axis, and binomial coefficients count arbitrary lattice paths from (0, 0)
to (2m, 0) or to (2m, 2) with steps (1, 1) and (1,−1). In other words, show that the difference
between the number of paths to (2m, 0) and to (2m, 2) is Cm, the number of paths that never go
below the x-axis.

B.5 Bounding probability in the proof

Show inequality (3.2).

11



B.6 Almost sure convergence and convergence in probability

Show that in Wigner’s semicircle law, the weakly almost sure convergence of random measures
νn to µsc implies weak convergence in probability.

B.7 Wigner’s semicircle law for complex Wigner matrices

Complex Wigner matrices are Hermitian symmetric, with iid complex off-diagonal entries, and
real iid diagonal entries (all mean zero). Each complex random variable has independent real and
imaginary parts.

1. Compute the expected trace of powers of a complex Wigner matrix.

2. Outline the remaining steps in the proof of Wigner’s semicircle law for complex Wigner
matrices.

B.8 Semicircle law without the moment condition

Prove Theorem 5.3.
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