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1 Recap

Note: I did some live random matrix simulations here and here — check them out. More simu-
lations to come.

1.1 Gaussian ensembles

We introduced Gaussian ensembles, and for GOE (β = 1) we computed the joint eigenvalue
density. The normalization is so that the off-diagonal elements have variance 1

2 and the diagonal
elements have variance 1. Then the joint eigenvalue density is

p(λ1, . . . , λn) =
1

Zn

n∏
i=1

e−
1
2
λ2
i

∏
1≤i<j≤n

(λi − λj), λ1 ≥ λ2 ≥ . . . ≥ λn.

1.2 Tridiagonalization

We showed that any real symmetric matrix A can be tridiagonalized by an orthogonal transfor-
mation Q:

Q⊤AQ = T,

where T is real symmetric tridiagonal, having nonzero entries only on the main diagonal and the
first super-/subdiagonals:

T =


d1 α1 0 · · · 0
α1 d2 α2 · · · 0

0 α2 d3
. . .

...
...

...
. . .

. . . αn−1

0 0 · · · αn−1 dn

 .

In the proof, each time we need to act in the orthogonal complement to the subspace e1, . . . , ek−1

(starting from e1), and apply a Householder reflection to zero out everything strictly below the
subdiagonal. (We apply the transformations like A 7→ HAH⊤, so that the first row transforms
in the same way as the first column of A).
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2 Tridiagonal random matrices

2.1 Distribution of the tridiagonal form of the GOE

Applying the tridiagonalization to GOE, we obtain the following random matrix model.

Theorem 2.1. Let W be an n× n GOE matrix (real symmetric) with variances chosen so that
each off-diagonal entry has variance 1/2 and each diagonal entry has variance 1. Then there
exists an orthogonal matrix Q such that

W = Q⊤ T Q,

where T is a real symmetric tridiagonal matrix

T =


d1 α1 0 · · ·

α1 d2 α2
. . .

0 α2 d3
. . .

...
. . .

. . .
. . .

 , (2.1)

and the random variables {di, αj}1≤i≤n, 1≤j≤n−1 are mutually independent, with

di ∼ N (0, 1), αj =

√
χ2

n−j

2
,

where χ2
ν is a chi-square distribution with ν degrees of freedom.

Remark 2.2 (Chi-square distributions). The chi-square distribution with ν degrees of freedom,
denoted by χ2

ν , is a fundamental distribution in statistics and probability theory. It arises nat-
urally as the distribution of the sum of the squares of ν independent standard normal random
variables. Formally, if Z1, Z2, . . . , Zν are independent random variables with Zi ∼ N (0, 1), then
the random variable

Q =
ν∑

i=1

Z2
i

follows a chi-square distribution with ν degrees of freedom, i.e., Q ∼ χ2
ν . In the context of

Theorem 2.1, the αj ’s can be called chi random variables.
The parameter ν does not need to be an integer, and the chi-square distribution is well defined

for any positive real ν, for example, by continuation of the density formula. The probability
density is

f(x) =
1

2ν/2 Γ(ν/2)
xν/2−1 e−x/2, x ≥ 0.

Proof of Theorem 2.1. In the process of tridiagonalization, we apply Householder reflections.
Note that the diagonal entries stay fixed, and we only change the off-diagonal entries. Let us
consider these off-diagonal entries.
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In the first step, we apply the reflection in Rn−1 to turn the column vector (a2,1, a3,1, . . . , an,1)
into a vector parallel to (1, 0, . . . , 0) ∈ Rn−1. Since the Householder reflection is orthogonal, it
preserves lengths. So,

α1 =
√
a221 + a231 + · · ·+ a2n1, ai1 ∼ N (0,

1

2
).

This implies that α1 has the desired chi distribution. The distribution of the other entries is
obtained similarly by the recursive application of the Householder reflections.

Note that αj ’s and di’s depend on nonintersecting subsets of the matrix entries, so they are
independent. This completes the proof.

2.2 Dumitriu–Edelman GβE tridiagonal random matrices

Let us define a general β extension of the tridiagonal model for the GOE.

Definition 2.3. Let β > 0 be a parameter. The tridiagonal GβE is a random n× n tridiagonal
real symmetric matrix T as in (2.1), where di ∼ N (0, 1) are independent standard Gaussians,
and

αj ∼
1√
2
χβ(n−j), 1 ≤ j ≤ n− 1,

are chi-distributed random variables.

We showed that for β = 1, the GβE is the tridiagonal form of the GOE random matrix model.
The same holds for the two other classical betas:

Proposition 2.4 (Without proof). For β = 2, the GβE is the tridiagonal form of the GUE
random matrix model, which is the random complex Hermitian matrix with Gaussian entries and
maximal independence. Similarly, for β = 4, the GβE is the tridiagonal form of the GSE random
matrix model.

Moreover, for all β, the joint eigenvalue density of GβE is explicit:

Theorem 2.5 ([DE02]). Let T be a GβE matrix as in Definition 2.3. Then the joint eigenvalue
density is given by

p(λ1, . . . , λn) =
1

Zn,β
e−

1
2

∑n
i=1 λ

2
i

∏
1≤i<j≤n

|λi − λj |β, λ1 ≥ λ2 ≥ . . . ≥ λn.

This theorem is also given without proof. The proof involves linear algebra and computation
of the Jacobians of the change of variables from the matrix entries to the eigenvalues in the
tridiagonal setting. It can be found in the original paper [DE02].

2.3 The case β = 2

For many questions involving local eigenvalue statistics, the case β = 2 (the GUE, Gaussian
Unitary Ensemble) is the most tractable. This is because the joint density of the eigenvalues
admits a determinantal structure coming from a square Vandermonde factor

∏
i<j(λi −λj)

2 and

the Gaussian exponential exp
(
−1

2

∑
λ2j

)
. Moreover, for β = 2, the random matrix model and

its correlation functions can be expressed explicitly through determinants involving orthogonal
polynomials, namely, the Hermite polynomials.
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Proposition 2.6 (Joint density for GUE and orthogonal polynomials). Consider the GUE
(Gaussian Unitary Ensemble) random matrix model, i.e. an n × n complex Hermitian matrix
whose entries are i.i.d. up to the Hermitian condition, with each off-diagonal entry distributed as
N (0, 12) + iN (0, 12) and each diagonal entry N (0, 1). The ordered eigenvalues λ1 ≥ · · · ≥ λn (or,
without ordering, thought of as an unordered set) satisfy the joint probability density

p(λ1, . . . , λn) =
1

Zn,2

n∏
j=1

e−
1
2
λ2
j

∏
1≤i<j≤n

(λi − λj)
2, (2.2)

where Zn,2 is a normalization constant.
Moreover, if {ψk(λ)}∞k=0 is the family of Hermite polynomials, orthonormal with respect to

the measure w(λ) dλ = e−λ2/2 dλ on R (i.e.,

∫ ∞

−∞
ψk(λ)ψℓ(λ)w(λ) dλ = 1k=ℓ), then one can also

write

p(λ1, . . . , λn) = const · det
[
ψj−1(λk)e

−λ2k
4

]n
j,k=1

det
[
ψj−1(λk)e

−λ2k
4

]n
j,k=1

(2.3)

(the two determinants are identical, but let us keep this notation for future convenience).

The square determinant structure is extremely useful. It is precisely the β = 2 counterpart
of the squared Vandermonde factor

∏
i<j(λi − λj)

2.

Remark 2.7 (Hermite polynomials). There are various normalizations of Hermite polynomials.
In random matrix theory for the Gaussian ensembles, we often use the probabilists’ Hermite
polynomials (sometimes called Hek, but we use the notationHk). There are various normalizations
due to the factor in the exponent of x2.

A convenient definition for use with the weight e−x2/2 is:

Hk(x) = (−1)k e
x2

2
dk

dxk

(
e−

x2

2

)
, k = 0, 1, . . . , (2.4)

whose leading term is xk. Polynomials with the leading coeffient 1 are called monic. The first
few monic Hermite polynomials are

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 +3.

The difference between Hk and ψk entering Proposition 2.6 is in a constant normalization, since
Hk are monic but not orthonormal, while ψk are orthonormal but not monic.

Sketch of the determinantal representation. In brief, one observes that the factor
∏

i<j(λi−λj) is
exactly the Vandermonde determinant ∆(λ1, . . . , λn) = det

[
λj−1
k

]n
j,k=1

. Next, the Vandermonde
determinant is also equal to the determinant built out of any monic family of polynomials of the
corresponding degrees (by linear transformations), and so we get the desired representation.

We will work with Hermite polynomials and the determinantal structure in Proposition 2.6
in the next Lecture 5).
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3 Wigner semicircle law via tridiagonalization

If W is an n×n real Wigner matrix with entries of mean zero and variance 1 on the off-diagonal,
then as n → ∞, the empirical spectral distribution (ESD) of W/

√
n converges weakly almost

surely to the Wigner semicircle distribution:

µsc(dx) =
1

2π

√
4− x2 1|x|≤2 dx.

We already derived this in Lecture 2 by a direct combinatorial argument on the trace. Now we
present another proof by using the tridiagonal form of W . The argument is conceptually simpler
in some steps, because the matrix is sparser (only tridiagonal). At the same time, we will establish
the Wigner semicircle law for the general GβE case (but only Gaussian), and thus it will apply
to GUE and GSE.

3.1 Moments for tridiagonal matrices

Consider the rescaled GβE matrix T/
√
n:

T√
n

=


d1/

√
n α1/

√
n 0 · · ·

α1/
√
n d2/

√
n α2/

√
n

. . .

0 α2/
√
n d3/

√
n

. . .
...

. . .
. . .

. . .

 ,

where di ∼ N (0, 1) and αj ∼ 1√
2
χβ(n−j). We want to show that the ESD of T/

√
n converges

to the semicircle law. We will mostly consider expected traces of powers, and leave the analytic
parts of the argument to the reader.

The k-th (random) moment of the ESD 1
n

∑n
i=1 δλi/

√
n is

1

n
Tr

(
T√
n

)k
=

1

n1+
k
2

n∑
i1,...,ik=1

ti1,i2 · · · tik,i1 , (3.1)

where tij are the non-rescaled entries of T . But now tij is nonzero only if |i− j| ≤ 1, i.e. the (i, j)
entry is on the main or first super-/subdiagonal. In a closed product ti1i2 · · · tiki1 , we thus get a
closed walk in a linear graph on the vertex set {1, 2, . . . , n} with edges only between consecutive
indices.

The relevant combinatorial objects encoding these walks are lattice walks in Z2
≥0 starting

at (0,m), ending at (k,m), and consisting of steps (1, 0), (1, 1), and (1,−1). The steps (1, 0)
correspond to picking the diagonal element; steps (1, 1) correspond to picking iℓ+1 = iℓ + 1, and
steps (1,−1) correspond to iℓ+1 = iℓ − 1. See Figure 1 for an illustration of a path.

Now, each term in the sum in (3.1) corresponds to a path. Moreover, for each path shape,
there are O(n) summands corresponding to it. The number of paths of length k starting from a
fixed m is finite (independent of n for m≫ 1), so we need to look more closely at the asymptotics
of the product in (3.1). This product involves chi random variables which depend on n, too.
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x

y

Figure 1: Example of a lattice path starting at height 3.

3.2 Asymptotics of chi random variables

One additional technical point in analyzing T/
√
n is to note that αj is roughly

√
β(n− j)/2 for

large n. Indeed, we have

χ2
ν =

ν∑
i=1

Z2
i , E[χ2

ν ] = ν, Var[χ2
ν ] = 2ν.

Now, since we are dividing by
√
n, we have

αj√
n
∼

√
β

2

√
1− θ, θ =

j

n
∈ [0, 1].

This estimate is valid in the “bulk” region, that is, when θ is strictly between 0 and 1.
Let us make these estimates more precise. We have:

Proposition 3.1 (Pointwise asymptotics in the bulk). Fix small δ > 0, and let j range so that
θj := j/n ∈ [δ, 1− δ]. Then for each such j, we have1

αj√
n

=

√
β

2

(
1− j

n

)
+ Op

( 1√
n

)
,

In particular,

lim
n→∞

αj√
n

=

√
β

2
(1− θj) in probability.

Remark 3.2. Outside the bulk region (i.e. very close to j = 0 or j = n), one would need a
different statement to handle the case β(n− j) is not large. In our application, we only need the
bulk behavior. See also Problem D.3.

Meanwhile, on the diagonal, di/
√
n almost surely vanishes in the limit as n→ ∞, because di

is standard Gaussian and does not depend on n.

1Here and below, Op(·) denotes a term that is stochastically bounded at the indicated order as n → ∞. That
is, Xn = Op(an) means that for any ϵ > 0, there exists M > 0 such that P(|Xn/an| > M) < ϵ for all sufficiently
large n.
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3.3 Completing the proof: global semicircle behavior

Putting the above pieces together, we see that

T√
n
=

1

n

n∑
i1,...,ik=1

k∏
ℓ=1

tiℓiℓ+1√
n
, ik+1 = i1 by agreement. (3.2)

The terms in the sum have all iℓ’s close together (there are k indices, and they differ by ±1 from
each other). We may think that they are close to some θn, where θ ∈ [0, 1]. We can consider only
the case when δ < θ < 1 − δ for some fixed small δ > 0; the case of edges does not contribute
(see Problem D.3).

If at least one of the tij ’s in (3.2) is on the diagonal, the term vanishes in the limit. Therefore,
it suffices to consider only the off-diagonal αj ’s. The number of length k walks starting from

m = θn for θ > δ is just the number of lattice walks with steps (1,±1). This number is
(

k
k/2

)
.2

(From now on till the end of the section, we assume that k is even — the moments become zero
for odd k).

Fixing the starting location θ = iℓ
n ∈ (δ, 1− δ), we have

k∏
ℓ=1

tiℓiℓ+1√
n

→ (β/2)k/2(1− θ)k/2.

There is an extra factor 1/n in front in (3.2), which is interpreted as transforming the sum
over i1, . . . , ik into an integral in θ. We thus see that the moments converge to

(β/2)k/2
(
k

k/2

)∫ 1

0
(1− θ)k/2 dθ = (β/2)k/2

(
k

k/2

)
· 1

1 + k/2
,

and we recover our favorite Catalan moments of the semicircle distribution.
This completes the proof.

Remark 3.3 (The factor (β/2)k/2). Note that the factor βk/2 refers just to the scaling of the
Wigner semicircle law, and does not affect the semicircle shape. More precisely, the limiting
semicircle distribution lies from [−

√
2β,

√
2β].

The density of the semicircle distribution on [−
√
2β,

√
2β] is√

2− x2

β

π
√
β

, |x| <
√
2β,

and the moments are precisely (β/2)k/2Ck/2 (for even k).

4 Wigner semicircle law via Stieltjes transform

Let us stay in the tridiagonal setting, and explore a more analytic method to derive the Wigner
semicircle law.

2Not Catalan yet!
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4.1 Tridiagonal structure and characteristic polynomials

We let

T − λI =


d1 − λ α1 0 · · ·

α1 d2 − λ α2
. . .

0 α2 d3 − λ
. . .

...
. . .

. . .
. . .

 .

We want to understand eigenvalues, that is, zeros of the characteristic polynomial det(T − λI).

4.1.1 Three-term recurrence for the characteristic polynomial

As a warm-up, let us consider the characteristic polynomial of a tridiagonal matrix.
For each k = 1, . . . , n, denote by Tk the top-left k×k submatrix of T . Define the characteristic

polynomial of that block:
pk(λ) = det

(
Tk − λIk

)
.

By convention, set p0(λ) := 1. Then a determinant expansion argument along the first column
gives the following three-term recurrence relation:

Lemma 4.1 (Three-Term Recurrence). The characteristic polynomial pk(λ) of the k × k tridi-
agonal matrix Tk satisfies the three-term recurrence

pk+1(λ) = (dk+1 − λ) pk(λ)− α2
k pk−1(λ), k = 1, . . . , n− 1,

µ

See also Problem D.4.

4.1.2 Spectral connection and eigenvalues

The eigenvalues λ1, . . . , λn of T are exactly the roots of pn(λ). For any λ ∈ C, if λ is not an
eigenvalue, then

(
T − λI

)
is invertible.

When λ is close to a real eigenvalue, the behavior of the resolvent
(
T − λI

)−1
becomes

large. Tracking these poles in the complex plane is the key to the resolvent or Stieltjes transform
approach.

4.2 Stieltjes transform / resolvent

Recall that for a matrix A with real eigenvalues λ1, . . . , λn, the Stieltjes transform (or Green’s
function, or resolvent trace) is

Gn(z) =
1

n
Tr

[
(A− zI)−1

]
, z ∈ C \ R.

If z = x+ iy is in the upper half-plane (y > 0), this Gn(z) can be seen as

Gn(z) =

∫
R

dµn(λ)

λ− z
,

9



where µn = 1
n

∑n
k=1 δλk

is the empirical spectral measure. Equivalently, ImGn(x+ i0+) encodes
the density of eigenvalues around x. Thus, understanding Gn(z) for large n pinpoints the limiting
spectral distribution.

Let us apply this to A = T/
√
n (an n× n tridiagonal matrix). We want to investigate

Gn(z) :=
1

n
Tr

(
T/

√
n− zI

)−1
,

for complex z. Since T/
√
n has nonzero entries only on the main and first off-diagonals, one can

write down a linear recurrence for the entries Rij of the resolvent R(z) = (T/
√
n − zI)−1, from

the equation ∑
k

(
T/

√
n− zI

)
ik
Rkj = 1i=j .

We have (
di√
n
− z

)
Rij +

αi√
n
Ri+1,j +

αi−1√
n
Ri−1,j = 1i=j .

Let fu(θ) := R⌊nθ⌋,⌊nu⌋. Then the above equation becomes(
d⌊nθ⌋√
n

− z

)
fu(θ) +

α⌊nθ⌋√
n
fu(θ + 1/n) +

α⌊nθ⌋−1√
n

fu(θ − 1/n) = 1θ=u.

Scaling with n (and ignoring the boundary conditions and convergence issues), we get a differential
equation for fu(θ):

−zfu(θ) +
√
β(1− θ)

2

[
f ′′u (θ) + 2fu(θ)

]
= δ(θ − u). (4.1)

The resolvent trace (the Stieltjes transform) is then the integral of the solution:

1

n

n∑
i=1

Rii ∼ G(z) :=

∫ 1

0
fθ(θ) dθ.

At this point, I am stuck on how to pass from (4.1) to the Stieltjes
transform G(z). This would be an excellent topic to explore for a
presentation. See Problem D.7.

4.3 Approach via continued fractions

We derive the Wigner semicircle law using the continued fraction representation of the Stieltjes
transform (or Green’s function) associated with a tridiagonal (Jacobi) matrix. In the Dumitriu–
Edelman model for the GUE (let us assume β = 2 for simplicity) after appropriate rescaling, the
matrix’s diagonal entries vanish and the off-diagonal entries become essentially constant in the
bulk. This leads to a homogeneous three-term recurrence for the corresponding monic orthogonal
polynomials. We then show that the Stieltjes transform of the limiting measure may be written
as an infinite continued fraction, which yields a quadratic self–consistent equation. Solving that
equation and applying the Stieltjes inversion formula recovers the semicircle density.
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A real symmetric tridiagonal matrix (a Jacobi matrix ) has the form

J =



a0 b1 0 · · · 0

b1 a1 b2
. . .

...

0 b2 a2
. . . 0

...
. . .

. . .
. . . bn−1

0 · · · 0 bn−1 an−1


,

with bj > 0. Associated with J is a sequence of monic polynomials {pn(z)}n≥0 defined by the
three–term recurrence

p0(z) = 1,

p1(z) = z − a0,

pn+1(z) = (z − an)pn(z)− b2n pn−1(z), n ≥ 1.

(4.2)

It is well known that there exists a probability measure µ on R such that the polynomials {pn(z)}
are orthogonal with respect to µ.

In the Dumitriu–Edelman tridiagonal model for the GUE (with β = 2) the matrix is con-
structed so that, after rescaling by

√
n, one obtains

T√
n
=


d1/

√
n α1/

√
n 0 · · ·

α1/
√
n d2/

√
n α2/

√
n

. . .

0 α2/
√
n d3/

√
n

. . .

...
. . .

. . .
. . .

 ,

with

di ∼ N (0, 1), αj ∼
1√
2
χ2(n−j).

In the large n limit, the diagonal entries di/
√
n vanish and (in the bulk) one has

α2
j

n
→ 1.

Thus, in the limit the recurrence coefficients become

an = 0, bn = 1,

for all n. In this homogeneous case the three-term recurrence (4.2) reduces to

p0(z) = 1, p1(z) = z, pn+1(z) = z pn(z)− pn−1(z).

The Stieltjes transform of the measure µ is defined by

m(z) =

∫
R

dµ(x)

z − x
, z ∈ C \ R.
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A classical result in the theory of orthogonal polynomials (e.g., see [Sok20]) is that m(z)
may be written as the continued fraction

m(z) =
1

z − a0 −
b21

z − a1 −
b22

z − a2 −
b23

z − a3 − · · ·

. (4.3)

In our case, since an = 0 for all n and bn = 1 for all n, this simplifies to

m(z) =
1

z −
1

z −
1

z −
1

. . .

. (4.4)

Observe that the infinite continued fraction in (4.4) is self–similar; that is, if we denote the
entire continued fraction by m(z), then the tail of the continued fraction is again m(z). Thus we
have the relation

m(z) =
1

z −m(z)
.

Multiplying both sides by the denominator yields

m(z)
(
z −m(z)

)
= 1.

Expanding the left–hand side we obtain the quadratic equation

m(z)2 − z m(z) + 1 = 0. (4.5)

The quadratic (4.5) has the solutions

m(z) =
z ±

√
z2 − 4

2
.

To determine the correct branch, recall that for z in the upper half–plane (Im(z) > 0) we must
have Im m(z) > 0. The proper solution is

m(z) =
z −

√
z2 − 4

2
, (4.6)

where the square root is defined so that
√
z2 − 4 ∼ z as z → ∞ and Im

√
z2 − 4 > 0 when

Im(z) > 0.
The density ρ(x) of the measure µ is recovered from the Stieltjes transform via the inversion

formula:

ρ(x) =
1

π
lim
ϵ→0+

Im m(x+ iϵ).
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For x in the interval (−2, 2) one computes that√
(x+ iϵ)2 − 4 −−−→

ϵ→0+
i
√
4− x2.

Thus, from (4.6) we have, for x ∈ (−2, 2),

m(x+ i0) =
x− i

√
4− x2

2
.

Taking the imaginary part gives

Im m(x+ i0) =

√
4− x2

2
,

so that

ρ(x) =
1

π
Im m(x+ i0) =

1

2π

√
4− x2, x ∈ (−2, 2).

This is precisely the celebrated Wigner semicircle law.

5 Determinantal point processes (discrete)

We are now going to start the discussion of the local eigenvalue behavior at β = 2, started in
Section 2.3. We begin with a general discussion of determinantal point processes (DPPs), starting
in discrete world. The continuous world is going to be considered in the next Lecture 5.

In this section, we introduce determinantal point processes (DPPs) over a discrete state space
and explore some of their properties. Our main reference is [Bor11].

Setup. Let X be a (finite or countably infinite) discrete set endowed with the counting measure
µ. A point configuration on X is any subset X ⊂ X, finite or infinite, with no repeated points.3

We write Conf(X) for the set of all point configurations, which carries the natural σ-algebra
generated by the functions 1{x∈X}, x ∈ X. A random point process P on X is a probability
measure on Conf(X).

Definition 5.1 (Determinantal point process). A random point process P on a discrete set X is
determinantal if there exists a kernel function K : X×X → C such that for every finite collection
of pairwise distinct points x1, . . . , xn ∈ X,

P{x1, . . . , xn ∈ X} = det
[
K(xi, xj)

]n
i,j=1

. (5.1)

That is, all finite-dimensional distributions of P take a determinantal form. The function K is
called a correlation kernel for P .

Correlation functions and the kernel. The condition (5.1) captures all finite-dimensional
distributions of P . Equivalently, let

ρn(x1, . . . , xn) := P{there is a particle at each xi}
3Some texts allow multiplicities, but we disallow them here.
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for distinct x1, . . . , xn. In the discrete setting, ρn is sometimes called the (unordered) correlation
function. The process is determinantal if and only if

ρn(x1, . . . , xn) = det
[
K(xi, xj)

]n
i,j=1

for each n ≥ 1.

Basic properties. If P is a DPP with correlation kernel K : X × X → C, then for any subset
I ⊂ X,

P{X ∩ I = ∅} = det
[
1−KI

]
, (5.2)

where KI is the operator
[
K(x, y)

]
x,y∈I (viewed as a matrix if X is finite, or an infinite matrix

if X is countably infinite with convergent sums). More generally, if I1, . . . , Im ⊂ X are disjoint
subsets, then the joint event {|X ∩ Ik| = nk for 1 ≤ k ≤ m} can be expressed via the determinant
det

[
1−

∑m
k=1 zkKIk

]
and its derivatives.

Remark 5.2. For any function ϕ : X → C such that the operator
[
(1 − ϕ(x))K(x, y)

]
x,y∈X is

trace class, the exponential generating function for ϕ is

E
[∏
x∈X

ϕ(x)
]
= det

[
1− (1− ϕ)K

]
.

This identity makes determinantal point processes more tractable than general processes.

A key example: one-dependent processes on Z

We highlight an important application from [BDF10] that connects 1-dependent processes on an
integer segment (or a finite subset of Z) to determinantal processes. A point process P on Z
is 1-dependent if, for any two disjoint finite sets A,B ⊂ Z with dist(A,B) ≥ 2, the correlation
function factorizes:

ρ|A|+|B|(A ∪B) = ρ|A|(A) ρ|B|(B).

Theorem 5.3 ([BDF10, Thm. 1.1]]). Any one-dependent point process on a finite segment of Z
is a determinantal process. Moreover, its correlation kernel K can be explicitly computed.

Example 5.4 (Adding a list of numbers). Consider an i.i.d. sequence of random variables {ξj}
(each taking values in {0, 1}), and define the partial sums Sn =

∑n
j=1 ξj . The occupancy pro-

cess, marking site Sn as “occupied,” forms a 1-dependent sequence. By Theorem 5.3, it is thus
determinantal.

6 Application of determinantal processes to random matrices at
β = 2

In this final section of the lecture, we illustrate how the theory of determinantal point processes
(DPPs) introduced in Section 5 applies to the study of local eigenvalue statistics of random
matrices. We concentrate on the β = 2 setting, where DPPs typically govern the joint behavior
of eigenvalues at microscopic (local) scales in the bulk and at the edge of the spectrum. We also
include a simpler example of a Poisson process to highlight the role of correlation functions.
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6.1 Local eigenvalue statistics (bulk and edge scaling limits)

Given an n× n random Hermitian matrix W whose eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn are real, we
often want to study the local arrangement of the eigenvalues:

• Bulk regime: eigenvalues near some interior point α of the limiting (global) spectral support,
rescaled so that we see “microscopic” spacing on the order of O( 1n). For Wigner or Gaussian
ensembles, one typically looks at a point α in the interior (−2, 2) of the semicircle support
and then rescales eigenvalues around α by the typical local spacing 1/(nρ(α)). Here ρ(α)
is the density of eigenvalues at α, which is semicircle density in the Wigner case.

• Edge regime: eigenvalues near an endpoint of the support (for instance, near x = 2 for the
semicircle distribution). One then uses a rescaling of order n2/3 (in many classical models)
to see nontrivial statistics describing how eigenvalues “peel off” near the boundary.

In both cases, one replaces the original sequence of eigenvalues {λi} by a point process on R.
The bulk scaling leads to the sine-kernel process (e.g. sin(π(x − y))/(π(x − y)) in the GUE) or
more generally to other determinantal processes. The edge scaling typically leads to the Airy-
kernel process. For Gaussian ensembles at β = 2, these processes are determinantal, and one
can explicitly write correlation kernels involving special functions (sine, Airy, and more generally
Hermite polynomials).

6.2 Correlation functions and densities

We recall from Section 5 (in the discrete setting) that a point process X on a space X can be
described by its correlation functions {ρk}∞k=1. In the continuous setting (e.g. X = R or an
interval), these are defined so that

ρk(x1, . . . , xk) dx1 · · · dxk = (probability that there is a particle in each small set dxi near xi, for 1 ≤ i ≤ k).
(6.1)

Equivalently, ρk is the k-th (unordered) joint density of the process. In particular,

ρ1(x) dx = expected number of particles in a small interval of length dx near x.

For a determinantal point process in the continuous setting, there is a kernel K(x, y) such that

ρk(x1, . . . , xk) = det
[
K(xi, xj)

]k
i,j=1

for each k ≥ 1. (6.2)

The simplest example is the Poisson process (see Section 6.3), which in fact is not determinantal
but helps illustrate how correlation functions characterize clustering or repulsion of points.

6.3 Poisson process example

A Poisson point process with intensity λ > 0 on R is defined by:

• Particles are scattered independently over real line,

• The expected number of particles in an interval I ⊂ R is λ|I|.
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Equivalently, one often states that the number of points in any interval I follows a Poisson(λ|I|)
distribution, and disjoint intervals are filled independently. One can also check that the correlation
functions factorize completely:

ρk(x1, . . . , xk) = λk.

Hence, in the Poisson process, there is no “interaction” or “repulsion” between points: the position
of one particle does not affect the probability of having other particles nearby. In contrast, a
determinantal point process typically exhibits repulsion: if you know a particle is present near
x, it lowers the density of particles nearby. This effect is crucial in random matrix ensembles at
β = 2.

D Problems (due 2025-02-28)

D.1 Eigenvalue density of GβE

Read and understand the main principles of the proof of Theorem 2.5 in [DE02].

D.2 Chi-square mean and variance

Let X be a random variable with χ2
ν distribution. Compute the mean and variance of X. (If ν

is an integer, you can use the fact that χ2
ν is a sum of ν independent squares of standard normal

random variables. How to extend this to non-integer ν?)

D.3 Edge contributions in the tridiagonal moment computation

Show that the cases when the iℓ’s are close to the edge (θ = 0 or 1) in (3.2) do not contribute to
the limit of the moments.

D.4 Hermite polynomials and three-term recurrence

Show that the monic Hermite polynomials Hk(x) (2.4) satisfy the three-term recurrence relation

Hk(x) = xHk−1(x)− (k − 1)Hk−2(x).

D.5

Compute the determinant

det


1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

 .

D.6 Gap probabilities

1. Prove identity (5.2) for DPPs.

2. Prove the generalization computing {|X ∩ Ik| = nk for 1 ≤ k ≤ m}.
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D.7 Stieltjes transform approach for tridiagonal matrices

Complete the derivation from Section 4.2 to obtain the limiting Stieltjes transform G(z) for the
tridiagonal matrix T/

√
n.

Remark D.1. This is more of a literature search. It is extensive, and would make an excellent
topic for a presentation.
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