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E.10 Existence of Determinantal Point Processes with a Given Kernel . . . . . . . . . . 13

1 Recap

In Lecture 4 we discussed global spectral behavior of tridiagonal GβE random matrices, and
obtained the Wigert semicircle law for the eigenvalue density.

In this lecture we shift our focus to another powerful technique in random matrix theory:
the theory of determinantal point processes (DPPs). In the β = 2 (GUE) case the joint eigen-
value distributions can be written in determinantal form. We begin by discussing the discrete
version of determinantal processes, and then derive the correlation kernel for the GUE using
orthogonal polynomial methods. Finally, we show how the Christoffel–Darboux formula yields a
compact representation of the kernel and indicate how one may represent it as a double contour
integral—an expression well suited for steepest descent analysis in the large-n limit.

2 Discrete determinantal point processes

2.1 Definition and basic properties

Let X be a (finite or countably infinite) discrete set. A point configuration on X is any subset
X ⊂ X (with no repeated points). A random point process is a probability measure on the space
of such configurations.

Definition 2.1 (Determinantal Point Process). A random point process P on X is called deter-
minantal if there exists a function (the correlation kernel) K : X × X → C such that for any n
and every finite collection of distinct points x1, . . . , xn ∈ X, the joint probability that these points
belong to the random configuration is

P{x1, . . . , xn ∈ X} = det
[
K(xi, xj)

]n
i,j=1

.

Determinantal processes are very useful in probability theory and random matrices. They
are a natural extension of Poisson processes, and have some parallel properties. Many properties
of determinantal processes can be derived from “linear algebra” (broadly understood) applied to
the kernel K. There are a few surveys on them: [Sos00], [HKPV06], [Bor11], [KT12]. Let us just
mention two useful properties.

Proposition 2.2 (Gap Probability). If I ⊂ X is a subset, then

P{X ∩ I = ∅} = det
[
I −KI

]
,

where KI is the restriction of the kernel to I. If I is infinite, then the determinant is understood
as a Fredholm determinant.

Remark 2.3. The Fredholm determinant might “diverge” (equal to 0 or 1).
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Proposition 2.4 (Generating functions). Let f : X → C be a function such that the support of
f − 1 is finite. Then the generating function of the multiplicative statistics of the determinantal
point process is given by

E

[ ∏
x∈X

f(x)

]
= det

[
I + (∆f − I)K

]
,

where the expectation is over the random point configuration X ⊆ X, ∆f denotes the operator of
multiplication by f (i.e., (∆fg)(x) = f(x)g(x)) and the determinant is interpreted as a Fredholm
determinant if X is infinite.

Remark 2.5 (Fredholm Determinant — Series Definition). The Fredholm determinant of an
operator A on ℓ2(X) is given by the series

det(I +A) =

∞∑
n=0

1

n!

∑
x1,...,xn∈X

det
[
A(xi, xj)

]n
i,j=1

,

where the term corresponding to n = 0 is defined to be 1.

3 Determinantal structure in the GUE

3.1 Correlation functions as densities with respect to Lebesgue measure

In the discrete setting discussed above the joint probabilities of finding points in specified subsets
of X are given by determinants of the kernel evaluated at those points. When the underlying
space is continuous (typically a subset of R or Rd), one works instead with correlation functions
which serve as densities with respect to the Lebesgue measure.

Let X ⊂ R be a random point configuration. The n-point correlation function ρn(x1, . . . , xn)
is defined by the relation

P{there is a point in each of the infinitesimal intervals [xi, xi + dxi], i = 1, . . . , n}
= ρn(x1, . . . , xn) dx1 · · · dxn.

For a determinantal point process the correlation functions take a determinantal form:

ρk(x1, . . . , xk) = det
[
K(xi, xj)

]k
i,j=1

.

Remark 3.1. The reference measure does not necessarily have to be the Lebesgue measure. For
example, in the discrete setting, we can also talk about the reference measure, it is the counting
measure. The correlation kernel K(x, y) is better understood not as a function of two variables,
but as an operator on the Hilbert space L2(X, dµ), where µ is the reference measure. One can
also write K(x, y)µ(dy) or K(x, y)

√
µ(dx)µ(dy) to emphasize this structure.

This formulation is particularly useful in the continuous setting, as it allows one to express
statistical properties of the point process in terms of integrals over the kernel. For example, the
expected number of points in a measurable set A ⊂ R is given by

E[#(X ∩A)] =
∫
A
ρ1(x) dx,

while higher order joint intensities provide information about correlations between points.
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3.2 The GUE eigenvalues as DPP

3.2.1 Setup

We start from the joint eigenvalue density for the Gaussian Unitary Ensemble (GUE)

p(x1, . . . , xn)dx1 · · · dxn =
1

Zn,2

n∏
j=1

e−x2
j/2

∏
1≤i<j≤n

(xi − xj)
2dx1 · · · dxn. (3.1)

We will show step by step why this is a determinantal point process,

ρk(x1, . . . , xk) = det
[
Kn(xi, xj)

]k
i,j=1

, k ≥ 1,

with the kernel defined as

Kn(x, y) =

n−1∑
j=0

ψj(x)ψj(y),

where the functions

ψj(x) =
1√
hj
pj(x)

√
w(x), w(x) = e−x2/2,

are constructed from the monic Hermite polynomials {pj(x)} which are orthogonal with respect
to the weight w(x): ∫ ∞

−∞
pj(x)pk(x)e

−x2/2 dx = hj δjk.

Recall that “monic” means that the leading coefficient of pj(x) is 1, and we divide by the norm
to make the polynomials orthonormal.

3.2.2 Writing the Vandermonde as a determinant

The product ∏
1≤i<j≤n

(xi − xj)
2

is the square of the Vandermonde determinant. Recall that the Vandermonde determinant is
given by

∆(x1, . . . , xn) =
∏

1≤i<j≤n

(xj − xi) = det


1 x1 x21 · · · xn−1

1

1 x2 x22 · · · xn−1
2

...
...

...
. . .

...

1 xn x2n · · · xn−1
n

 .

Thus, we have ∏
1≤i<j≤n

(xi − xj)
2 =

(
det

[
xj−1
i

]n
i,j=1

)2

.
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3.2.3 Orthogonalization by linear operations

Since determinants are invariant under elementary row or column operations, we can replace the
monomials xj−1 by any sequence of monic polynomials of degree j − 1. In particular, we choose
the monic Hermite polynomials pj−1(x) and obtain

det
[
xj−1
i

]n
i,j=1

= det
[
pj−1(xi)

]n
i,j=1

.

The orthogonality condition for these polynomials is∫ ∞

−∞
pj(x)pk(x)e

−x2/2 dx = hj δjk.

We define the functions
ϕj(x) = pj(x)e

−x2/4,

and then introduce the orthonormal functions

ψj(x) =
1√
hj
ϕj(x) =

1√
hj
pj(x)e

−x2/4.

Note that here the weight splits as e−x2/2 = e−x2/4e−x2/4, which is useful in the next step.

3.2.4 Rewriting the density in determinantal form

Substituting the determinant form into the joint density (3.1), we have

p(x1, . . . , xn) =
1

Zn,2

n∏
j=1

e−x2
j/2

[
det

[
pj−1(xi)

]n
i,j=1

]2
.

Incorporate the weight factors into the determinant by writing

n∏
i=1

e−x2
i /2 =

n∏
i=1

(
e−x2

i /4 · e−x2
i /4

)
,

so that
n∏

i=1

e−x2
i /4 det

[
pj−1(xi)

]n
i,j=1

= det
[
ϕj−1(xi)

]n
i,j=1

.

Thus, the joint density becomes

p(x1, . . . , xn) =
1

Z̃n,2

[
det

[
ϕj−1(xi)

]n
i,j=1

]2
.

This squared-determinant structure is characteristic of determinantal point processes.
We now compute the k-point correlation function by integrating out the remaining n − k

variables:

ρk(x1, . . . , xk) =
n!

(n− k)!

∫
Rn−k

p(x1, . . . , xn) dxk+1 · · · dxn.
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Remark 3.2. When defining the k-point correlation function, one might initially expect a com-
binatorial factor corresponding to the number of ways of choosing k variables out of n, namely(
n
k

)
= n!

k!(n−k)! . The absence of an extra k! in the denominator is due to the fact that x1, . . . , xk
are fixed, and we are not integrating over all permutations of these variables.

Theorem 3.3 (Determinantal structure for squared-determinant densities). We have

ρk(x1, . . . , xk) = det
[
Kn(xi, xj)

]k
i,j=1

,

with the correlation kernel given by

Kn(x, y) =

n−1∑
j=0

ψj(x)ψj(y).

Proof. We begin by writing the joint density as

p(x1, . . . , xn) =
1

Z̃n,2

[
det

[
ϕj−1(xi)

]n
i,j=1

]2
.

Expanding the square of the determinant, we have[
det

[
ϕj−1(xi)

]n
i,j=1

]2
=

∑
σ,τ∈Sn

sgn(σ) sgn(τ)
n∏

i=1

ϕσ(i)−1(xi)ϕτ(i)−1(xi),

where Sn denotes the symmetric group on n elements.
Next, to obtain the k-point correlation function ρk(x1, . . . , xk), we integrate out the remaining

n− k variables:

ρk(x1, . . . , xk) =
n!

(n− k)!

∫
Rn−k

p(x1, . . . , xn) dxk+1 · · · dxn.

Since the joint density is symmetric under permutations of the variables, we may assume without
loss of generality that the first k variables are the ones being fixed.

Substituting the expansion of the squared determinant into the expression for ρk, we have

ρk(x1, . . . , xk) =
n!

(n− k)! Z̃n,2

∑
σ,τ∈Sn

sgn(σ) sgn(τ)
k∏

i=1

ϕσ(i)−1(xi)ϕτ(i)−1(xi)

n∏
j=k+1

∫
R
ϕσ(j)−1(x)ϕτ(j)−1(x) dx

 .

Now, change the functions ϕj(x) to the orthonormal functions ψj(x) using the relation

ϕj(x) =
√
hj ψj(x).

This substitution yields∫
R
ϕσ(j)−1(x)ϕτ(j)−1(x) dx =

√
hσ(j)−1hτ(j)−1

∫
R
ψσ(j)−1(x)ψτ(j)−1(x) dx.
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By the orthonormality of the ψj ’s, we have∫
R
ψσ(j)−1(x)ψτ(j)−1(x) dx = δσ(j),τ(j).

Therefore, for the indices j = k + 1, . . . , n, the integrals enforce the condition σ(j) = τ(j). As
a result, the double sum over σ and τ reduces to a single sum over permutations on the first k
indices, and the factors for the remaining indices simply contribute to the normalization constant.

Collecting these results, one deduces that

ρk(x1, . . . , xk) = const · det
[
Kn(xi, xj)

]k
i,j=1

,

where the kernel is given by

Kn(x, y) =
n−1∑
j=0

ψj(x)ψj(y).

To complete the proof, one must verify that the normalization constant is indeed 1. We can
achieve this by using the fact that pn is the same as ρn. Then, integrating ρn over all variables
gives the normalization constant, and we have∫

Rn

det
[n−1∑
ℓ=0

ψℓ(xi)ψℓ(xj)
]n
i,j=1

dx1 · · · dxn = n!, (3.2)

and the integral over x1 > · · · > xn is equal to 1, as it should be.
To prove (3.2), define the n× n matrix

A =
[
ψj−1(xi)

]n
i,j=1

.

Then, by the Cauchy–Binet formula,

det
[
Kn(xi, xj)

]n
i,j=1

= det
[
AA⊤

]
= det

[
A
]2
.

The Andreief integration formula tells us that∫
Rn

det
[
A
]2
dx1 · · · dxn = n! det

[∫
R
ψi−1(x)ψj−1(x) dx

]n
i,j=1

.

Since the ψj ’s are orthonormal, ∫
R
ψi−1(x)ψj−1(x) dx = δij ,

and hence
det

[
δij

]n
i,j=1

= 1.

This completes the proof of the theorem.
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3.3 Christoffel–Darboux formula

Theorem 3.4 (Christoffel–Darboux Formula). Let {pj(x)}j≥0 be a family of monic orthogonal
polynomials with respect to a weight function w(x) on an interval I ⊂ R. Their squared norms
are given by ∫

I
pj(x) pk(x)w(x) dx = hj δjk.

Define the orthonormal functions

ψj(x) =
1√
hj
pj(x)

√
w(x).

Then the kernel

Kn(x, y) =

n−1∑
j=0

ψj(x)ψj(y) =
√
w(x)w(y)

n−1∑
j=0

pj(x)pj(y)

hj
,

admits the closed-form representation

Kn(x, y) =
√
w(x)w(y)

1

hn−1

pn(x)pn−1(y)− pn−1(x)pn(y)

x− y
, (3.3)

with the obvious continuous extension when x = y.

Proof. Define

Sn(x, y) =
n−1∑
j=0

pj(x)pj(y)

hj
,

so that
Kn(x, y) =

√
w(x)w(y)Sn(x, y).

Our goal is to prove that

(x− y)Sn(x, y) =
1

hn−1

[
pn(x)pn−1(y)− pn−1(x)pn(y)

]
. (3.4)

Since the polynomials are monic and orthogonal, they satisfy the three-term recurrence rela-
tion

x pj(x) = pj+1(x) + αj pj(x) + βj pj−1(x), j ≥ 0,

with the convention p−1(x) = 0 and where βj =
hj

hj−1
. This recurrence comes from the three facts:

1. The polynomials are orthogonal with respect to the weight function w(x) supported on the
real line;

2. The operator of multiplication by x is self-adjoint with respect to the inner product induced
by w(x).

3. The multiplication by x of pj gives pj+1 plus a correction of degree ≤ j.
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Writing the recurrence for both pj(x) and pj(y) yields:

x pj(x) = pj+1(x) + αj pj(x) + βj pj−1(x),

y pj(y) = pj+1(y) + αj pj(y) + βj pj−1(y).

Multiplying the first equation by pj(y) and the second by pj(x), and then subtracting, we obtain:

(x− y)pj(x)pj(y) = pj+1(x)pj(y)− pj(x)pj+1(y) + βj

[
pj−1(x)pj(y)− pj(x)pj−1(y)

]
.

Dividing by hj and summing over j = 0, . . . , n− 1 gives:

(x− y)Sn(x, y) =

n−1∑
j=0

1

hj

[
pj+1(x)pj(y)− pj(x)pj+1(y)

]
+

n−1∑
j=0

βj
hj

[
pj−1(x)pj(y)− pj(x)pj−1(y)

]
.

A reindexing of the sums shows that the series telescopes, leaving only the boundary terms. In
particular, one finds

(x− y)Sn(x, y) =
1

hn−1

[
pn(x)pn−1(y)− pn−1(x)pn(y)

]
.

This establishes (3.4), and hence the representation (3.3) for Kn(x, y).
The continuous extension to x = y is obtained via l’Hôpital’s rule.

4 Double Contour Integral Representation for the GUE Kernel

4.1 One contour integral representation for Hermite polynomials

Recall that the GUE kernel is defined by

KN (x, y) =

N−1∑
n=0

ψn(x)ψn(y),

with the orthonormal functions

ψn(x) =
1√
hn

pn(x) e
−x2/4,

where the (monic, probabilists’) Hermite polynomials are given by

pn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2,

and satisfy the generating function

exp
(
xt− t2

2

)
=

∑
n≥0

pn(x)
tn

n!
.
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By Cauchy’s integral formula we can write

pn(x) =
n!

2πi

∮
C

exp
(
xt− t2

2

)
tn+1

dt,

where the contour C is a simple closed curve encircling the origin. Therefore,

ψn(x) =
1√
hn

pn(x) e
−x2/4 =

e−x2/4

√
hn

n!

2πi

∮
C

exp
(
xt− t2

2

)
tn+1

dt.

4.2 Another contour integral representation for Hermite polynomials

Note also that ∫ ∞

−∞
e−t2+

√
2i t x dt =

√
π e−x2/2.

Differentiating both sides n times with respect to x (and using the fact that in our convention
the Gaussian appears with x2/2) yields

dn

dxn

(
e−x2/2

)
=

1√
π

∫ ∞

−∞

(√
2i t

)n
e−t2+

√
2i t x dt.

Changing variables via s = i t (so that t = −i s and dt = −i ds) one obtains

dn

dxn

(
e−x2/2

)
=

(
√
2)n

i
√
π

∫ i∞

−i∞
sn es

2+
√
2 s x ds.

Multiplying by (−1)nex
2/2 we deduce that

pn(x) = (−1)nex
2/2 d

n

dxn

(
e−x2/2

)
=
i (
√
2)n ex

2/2

√
π

∫ i∞

−i∞
sn es

2−
√
2 s x ds. (4.1)

Now, recall that the orthonormal functions are defined as

ψn(x) =
1√
hn

pn(x) e
−x2/4,

so that by (4.1)

ψn(x) =
i ex

2/4

√
π hn

∫ i∞

−i∞
(
√
2s)n es

2−
√
2 s x ds =

i ex
2/4

√
2π hn

∫ i∞

−i∞
sn es

2/2−s x ds.

4.3 Double contour integral representation for the GUE kernel

We have (Problem E.9)

hn =

∫ ∞

−∞
pn(x)

2 e−x2/2 dx = n!
√
2π.
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Therefore, we can sum up the kernel (another proof of the Christoffel–Darboux formula):

Kn(x, y) =

n−1∑
k=0

ψk(x)ψk(y)

=
n−1∑
k=0

e−x2/4

√
hk

k!

2πi

∮
C

exp
(
xt− t2

2

)
tk+1

dt
i ey

2/4

√
2π hk

∫ i∞

−i∞
sk es

2/2−s y ds

= e(y
2−x2)/4

n−1∑
k=0

1

4π2

∮
C

exp
(
xt− t2

2

)
tk+1

dt

∫ i∞

−i∞
sk es

2/2−s y ds.

We can now extend the sum to k = −∞, and get a formula for the GUE kernel as a double
contour integral:

Kn(x, y) =
e(y

2−x2)/4

4π2

∮
C

∫ i∞

−i∞

exp
{

s2

2 − sy − t2

2 + tx
}

s− t

(s
t

)n
dsdt.

Details will be in the next Lecture 6.

Remark 4.1. Many other versions of the GUE / unitary invariant ensembles admit determinantal
structure:

1. The GUE corners process [JN06]

2. The Dyson Brownian motion (e.g., add a GUE to a diagonal matrix) [NF98]

3. GUE corners plus a fixed matrix [FF14]

4. Corners invariant ensembles with fixed eigenvalues UDU †, where D is a fixed diagonal
matrix and U is Haar distributed on the unitary group [Met13]

E Problems (due 2025-03-09)

E.1 Gap Probability for Discrete DPPs

Let X be a (finite or countably infinite) discrete set and suppose that a point process on X is
determinantal with kernel

K : X× X → C,

so that for any finite collection of distinct points x1, . . . , xn ∈ X the joint probability that these
points belong to the configuration is

P{x1, . . . , xn ∈ X} = det
[
K(xi, xj)

]n
i,j=1

.

Show that for any subset I ⊂ X (finite or such that the Fredholm determinant makes sense) the
gap probability

P{X ∩ I = ∅} = det
[
I −KI

]
,

where KI is the restriction of K to I × I.
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E.2 Generating Functions for Multiplicative Statistics

Let f : X → C be a function such that the support of f−1 is finite. Prove that for a determinantal
point process on X with kernel K the generating function

E
[∏
x∈X

f(x)
]
= det

[
I + (∆f − I)K

]
holds, where ∆f is the multiplication operator defined by (∆fg)(x) = f(x)g(x). Hint: Expand
the Fredholm determinant series and compare with the definition of the correlation functions.

E.3 Variance

Let I be a finite interval, and let N(I) be the number of points of a determinantal point process
in I with the kernel K(x, y). Find Var(I) in terms of the kernel K(x, y).

E.4 Formula for the Hermite polynomials

Show that the monic Hermite polynomials pj(x) are given by

pn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2.

E.5 Generating function for the Hermite polynomials

Show that
∞∑
n=0

tn

n!
pn(x) = etx−t2/2.

E.6 Projection Property of the GUE Kernel

Show that the kernel

Kn(x, y) =

n−1∑
j=0

ψj(x)ψj(y),

(with the orthonormal functions ψj defined as in the lecture) acts as an orthogonal projection
operator on L2(R). In other words, prove that for all x, y ∈ R∫ ∞

−∞
Kn(x, z)Kn(z, y) dz = Kn(x, y).

E.7 Recurrence Relation for the Hermite Polynomials

Show that the monic Hermite polynomials defined by

pn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2

satisfy the three-term recurrence relation

pn+1(x) = x pn(x)− n pn−1(x),

with the convention p−1(x) = 0.
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E.8 Differential Equation for the Hermite Polynomials

Prove that the monic Hermite polynomials pn(x) satisfy the second-order differential equation

p′′n(x)− x p′n(x) + n pn(x) = 0.

E.9 Norm of the Hermite Polynomials

Show that

hn =

∫ ∞

−∞
pn(x)

2 e−x2/2 dx = n!
√
2π.

E.10 Existence of Determinantal Point Processes with a Given Kernel

Let X be a locally compact Polish space equipped with a reference measure µ, and let K(x, y)
be the kernel of an integral operator K acting on L2(X,µ). Suppose that:

1. K is Hermitian (i.e. K(x, y) = K(y, x)),

2. K is locally trace class, and

3. 0 ≤ K ≤ I as an operator, that is, both the operator K and the operator I − K are
nonnegative definite. For K, this condition is∫

X

∫
X
f(x)K(x, y)f(y) dµ(x) dµ(y) ≥ 0

for all f ∈ L2(X,µ).

Under these conditions there exists a unique determinantal point process on X with correlation
functions given by

ρn(x1, . . . , xn) = det
[
K(xi, xj)

]n
i,j=1

.

Explain why the condition 0 ≤ K ≤ I is necessary. For the proof of the existence and uniqueness
of the determinantal point process, see [Sos00].

References

[Bor11] A. Borodin, Determinantal point processes, Oxford handbook of random matrix theory, 2011.
arXiv:0911.1153 [math.PR]. ↑2

[FF14] P. Ferrari and R. Frings, Perturbed GUE minor process and Warren’s process with drifts, J. Stat. Phys
154 (2014), no. 1-2, 356–377. arXiv:1212.5534 [math-ph]. ↑11

[HKPV06] J.B. Hough, M. Krishnapur, Y. Peres, and B. Virág, Determinantal processes and independence, Prob-
ability Surveys 3 (2006), 206–229. arXiv:math/0503110 [math.PR]. ↑2

[JN06] K. Johansson and E. Nordenstam, Eigenvalues of GUE minors, Electron. J. Probab. 11 (2006), no. 50,
1342–1371. arXiv:math/0606760 [math.PR]. ↑11

[KT12] A. Kulesza and B. Taskar, Determinantal Point Processes for Machine Learning, Foundations and
Trends in Machine Learning 5 (2012), no. 2–3, 123–286. arXiv:1207.6083 [stat.ML]. ↑2

[Met13] A. Metcalfe, Universality properties of Gelfand-Tsetlin patterns, Probab. Theory Relat. Fields 155
(2013), no. 1-2, 303–346. arXiv:1105.1272 [math.PR]. ↑11

13



[NF98] T. Nagao and P.J. Forrester, Multilevel dynamical correlation functions for Dyson’s Brownian motion
model of random matrices, Physics Letters A 247 (1998), no. 1-2, 42–46. ↑11

[Sos00] A. Soshnikov, Determinantal random point fields, Russian Mathematical Surveys 55 (2000), no. 5, 923–
975. arXiv:math/0002099 [math.PR]. ↑2, 13

L. Petrov, University of Virginia, Department of Mathematics, 141 Cabell
Drive, Kerchof Hall, P.O. Box 400137, Charlottesville, VA 22904, USA

E-mail: lenia.petrov@gmail.com

14


	Recap
	Discrete determinantal point processes
	Definition and basic properties

	Determinantal structure in the GUE
	Correlation functions as densities with respect to Lebesgue measure
	The GUE eigenvalues as DPP
	Setup
	Writing the Vandermonde as a determinant
	Orthogonalization by linear operations
	Rewriting the density in determinantal form

	Christoffel–Darboux formula

	Double Contour Integral Representation for the GUE Kernel
	One contour integral representation for Hermite polynomials
	Another contour integral representation for Hermite polynomials
	Double contour integral representation for the GUE kernel

	Problems (due 2025-03-09)
	Gap Probability for Discrete DPPs
	Generating Functions for Multiplicative Statistics
	Variance
	Formula for the Hermite polynomials
	Generating function for the Hermite polynomials
	Projection Property of the GUE Kernel
	Recurrence Relation for the Hermite Polynomials
	Differential Equation for the Hermite Polynomials
	Norm of the Hermite Polynomials
	Existence of Determinantal Point Processes with a Given Kernel


