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1 Recap: Determinantal structure of the GUE

Last time, we proved the following result:

Theorem 1.1. The GUE correlation functions are given by

ρk(x1, . . . , xk) = det
[
Kn(xi, xj)

]k
i,j=1

,

with the correlation kernel

Kn(x, y) =
n−1∑
j=0

ψj(x)ψj(y).

Here

ψj(x) =
1√
hj
pj(x) e

−x2/4,

where pj(x) are the monic Hermite polynomials, and hj are the normalization constants so that
ψj(x) are orthonormal in L2(R).

For this theorem, we need Cauchy–Binet summation formula and Andreief identity (which is
essentially the same as Cauchy–Binet, but when summation is replaced by integration). Having
these, we can write

ρk(x1, . . . , xk) =
n!

(n− k)!

ˆ
Rn−k

p(x1, . . . , xn) dxk+1 · · · dxn

=
1

(n− k)! Ẑn,2

∑
σ,τ∈Sn

σ(k+1)=τ(k+1),...,σ(n)=τ(n)

sgn(σ) sgn(τ)
k∏

i=1

ψσ(i)−1(xi)ψτ(i)−1(xi)

= constn
∑

I⊆[n], |I|=k

∑
σ′,τ ′∈S(I)

sgn(σ′) sgn(τ ′)

k∏
i=1

ψσ′(i)−1(xi)ψτ ′(i)−1(xi)

= constn
∑

I⊆[n], |I|=k

det [ψiα(xj)]
k
α,j=1 det [ψiα(xj)]

k
α,j=1 ,

where I = {i1, . . . , ik} is a subset of [n] of size k, and S(I) is the set of permutations of I. The
last sum of products of two determinants is written by the Cauchy–Binet formula as

constn · det

n−1∑
j=0

ψj(xα)ψj(xβ)

k

α,β=1

,

and finally the constant is equal to 1 by Andreief identity.
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2 Double Contour Integral Representation for the GUE Kernel

2.1 One contour integral representation for Hermite polynomials

Recall that the GUE kernel is defined by

KN (x, y) =
N−1∑
n=0

ψn(x)ψn(y),

with the orthonormal functions

ψn(x) =
1√
hn

pn(x) e
−x2/4,

where the (monic, probabilists’) Hermite polynomials are given by

pn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2. (2.1)

Note that the monic Hermite polynomials are uniquely defined by the orthogonality property.
We are not proving (2.1) here, it is an exercise.

Lemma 2.1 (Generator function for Hermite polynomials). We have

exp
(
xt− t2

2

)
=

∑
n≥0

pn(x)
tn

n!
.

The series converges for all t since the left-hand side is an entire function of t.

Proof. Write the generating function as∑
n≥0

pn(x)
tn

n!
=

∑
n≥0

(−1)ntn

n!
ex

2/2 d
n

dxn
e−x2/2.

Since the factor ex
2/2 does not depend on n, we can factor it out:∑

n≥0

pn(x)
tn

n!
= ex

2/2
∑
n≥0

(−t)n

n!

dn

dxn
e−x2/2.

Now, recall Taylor’s theorem: for any holomorphic function f we have

f(x− t) =
∑
n≥0

(−t)n

n!
f (n)(x).

Applying this with f(x) = e−x2/2, we deduce that∑
n≥0

(−t)n

n!

dn

dxn
e−x2/2 = e−(x−t)2/2.

Thus, our generating function becomes∑
n≥0

pn(x)
tn

n!
= ex

2/2 e−(x−t)2/2,

as desired.
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By Cauchy’s integral formula we can write using Lemma 2.1:

pn(x) =
n!

2πi

˛
C

exp
(
xt− t2

2

)
tn+1

dt, (2.2)

where the contour C is a simple closed curve encircling the origin. Indeed, here we use the
complex analysis property

1

2πi

˛
C

1

zk+1
dz =

{
1, if k = 0,

0, if k ̸= 0,

so (2.2) is simply a complex analysis version of the operation of extracting the coefficient of tn in
the Taylor expansion.

Therefore,

ψn(x) =
1√
hn

pn(x) e
−x2/4 =

e−x2/4

√
hn

n!

2πi

˛
C

exp
(
xt− t2

2

)
tn+1

dt.

2.2 Another contour integral representation for Hermite polynomials

We start with the Fourier transform identity

ˆ ∞

−∞
exp

(
− t

2

2
+ i t x

)
dt =

√
2π e−x2/2.

Differentiating both sides n times with respect to x yields

dn

dxn

(
e−x2/2

)
=

1√
2π

ˆ ∞

−∞
(i t)n e−t2/2+i t x dt.

Recalling the definition

pn(x) = (−1)n ex
2/2 dn

dxn

(
e−x2/2

)
,

we obtain

pn(x) =
(−1)n ex

2/2

√
2π

ˆ ∞

−∞
(i t)n e−t2/2+i t x dt.

Next, perform the change of variable

s = i t, so that t = −i s, dt = −i ds.

Under this substitution the factors transform as follows:

(i t)n = sn,

and the exponent becomes

− t
2

2
+ i t x = −(−i s)2

2
+ i (−i s)x =

s2

2
+ s x.
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Thus, the integral transforms into

ˆ ∞

−∞
(i t)n e−t2/2+i t x dt = −i

ˆ i∞

−i∞
sn es

2/2+s x ds.

Substituting back we have

pn(x) =
(−1)n ex

2/2

√
2π

(−i)
ˆ i∞

−i∞
sn es

2/2+s x ds.

That is,

pn(x) =
i (−1)n+1 ex

2/2

√
2π

ˆ i∞

−i∞
sn es

2/2+s x ds.

Finally, change the sign of s, and we get:

pn(x) =
i ex

2/2

√
2π

ˆ i∞

−i∞
sn es

2/2−s x ds.

Therefore,

ψn(x) =
i ex

2/4

√
2π hn

ˆ i∞

−i∞
sn es

2/2−s x ds.

2.3 Normalization of Hermite polynomials

Lemma 2.2. We have

hn =

ˆ ∞

−∞
pn(x)

2 e−x2/2 dx = n!
√
2π.

Proof. Multiply the generating function

exp
(
xt− t2

2

)
=

∑
n≥0

pn(x)
tn

n!

with a second copy (with parameter s):

exp
(
xs− s2

2

)
=

∑
m≥0

pm(x)
sm

m!
.

Then,

exp
(
xt− t2

2

)
exp

(
xs− s2

2

)
=

∑
n,m≥0

pn(x)pm(x)
tnsm

n!m!
.

Integrate both sides against e−x2/2 dx. Using the orthogonality

ˆ ∞

−∞
pn(x)pm(x)e−x2/2dx = hnδnm,
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the right-hand side becomes ∑
n≥0

hn
(n!)2

(ts)n.

On the left-hand side, we have

ˆ ∞

−∞
e−x2/2 exp

(
x(t+ s)− t2 + s2

2

)
dx.

Completing the square in x or recalling the standard Gaussian integral yields

√
2π exp

((t+ s)2 − (t2 + s2)

2

)
=

√
2π exp(ts).

Thus, we obtain
√
2π exp(ts) =

∑
n≥0

hn
(n!)2

(ts)n.

Expanding the left side as
√
2π

∑
n≥0

(ts)n

n!
,

and comparing coefficients, we conclude that

hn
(n!)2

=

√
2π

n!
=⇒ hn = n!

√
2π.

This completes the proof.

2.4 Double contour integral representation for the GUE kernel

We can sum up the kernel (essentially, this is another proof of the Christoffel–Darboux formula):

Kn(x, y) =
n−1∑
k=0

ψk(x)ψk(y)

=
e

x2−y2

4

(2π)2

˛
C
dt

ˆ i∞

−i∞
ds exp

{
− t

2

2
+ xt+

s2

2
− ys

} n−1∑
k=0

skt−k−1

︸ ︷︷ ︸
1−(s/t)n

t−s

.
(2.3)

Here we used the two contour integral representations for Hermite polynomials, and the explicit
norm (Lemma 2.2). At this point, the t contour is a small circle around 0, and the s contour is
a vertical line in the complex plane. Their mutual position can be arbitrary at this point — the
s contour goes along the imaginary line. Indeed, the fraction 1−(s/t)n

t−s does not have a singularity
at s = t due to the cancellation.

Let us now move the s contour to be to the left of the t contour, as in Figure 1. On the new
contours, we have |s| > |t|. Now we can add the summands skt−k−1 for all k ≤ −1 into the sum
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t
s

Figure 1: Integration contours for the GUE kernel (2.4).

in (2.3). Indeed, for |s| > |t|, the series in k converges, while the summand skt−k−1 has zero
residue at 0 and thus adding the summands does not change the value of the integral.

With this extension of the sum, formula (2.3) becomes

Kn(x, y) =
e(y

2−x2)/4

(2π)2

˛
C
dt

ˆ i∞

−i∞
ds

exp
{

s2

2 − sy − t2

2 + tx
}

s− t

(s
t

)n
. (2.4)

Remark 2.3. The s contour passes to the right of the t contour, but it might as well pass to the
left of it. Indeed, one can deform the s contour to the left while picking the residue at s = t:

2πi Ress=t

exp
{

s2

2 − sy − t2

2 + tx
}

s− t

(s
t

)n
= −et(x−y).

This function is entire in t, and its integral over the t contour is zero. Therefore, there is no
difference where the s contour passes with respect to the t contour.

2.5 Conjugation of the kernel

The kernel Kn(x, y) contains a factor e
y2−x2

4 = g(x)/g(y), where g(·) is a nonvanishing function.
This factor can be safely removed, since in all determinants det[Kn(xi, xj)]

k
i,j=1 representing the

correlation functions, the conjugation factors g(xi)/g(xj) do not affect the value of the determi-
nant. Thus, we can and will deal with the correlation kernel

Kn(x, y) =
1

(2π)2

˛
C
dt

ˆ i∞

−i∞
ds

exp
{

s2

2 − sy − t2

2 + tx
}

s− t

(s
t

)n
, (2.5)

and will use the same notation for it. Throughout the asymptotic analysis in Section 4 below,
other conjugation factors may appear, but we can similarly remove them.
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2.6 Extensions

Many other versions of the GUE / unitary invariant ensembles admit determinantal structure:

1. The GUE corners process [JN06]

2. The Dyson Brownian motion (e.g., add a GUE to a diagonal matrix) [NF98]

3. GUE corners plus a fixed matrix [FF14]

4. Corners invariant ensembles with fixed eigenvalues UDU †, where D is a fixed diagonal
matrix and U is Haar distributed on the unitary group [Met13]

We will discuss the corners process structure in the next Lecture 7.

3 Steepest descent — generalities for single integrals

3.1 Setup

In many problems arising in random matrix theory—as well as in asymptotic analysis more
generally—it is necessary to evaluate integrals of the form

I(Λ) =

ˆ
γ
eΛf(z)ϕ(z) dz, (3.1)

where

• Λ > 0 is a large parameter,

• f(z) and ϕ(z) are holomorphic functions in a neighborhood of the contour γ ⊂ C,

• and the contour γ is chosen in such a way that the integral converges.

The method of steepest descent (also known as the saddle point method) provides a systematic
procedure for obtaining the asymptotic behavior of I(Λ) as Λ → +∞.

The key observation is that for large Λ, the exponential term eΛf(z) is highly oscillatory or
decaying, so that the main contributions to the integral come from small neighborhoods of points
where the real part of f(z) is maximal. Moreover, since we can deform the integration contour γ
to pick points where Re f(z) is even bigger, it makes sense to find points not only on the original
contour where Re f(z) is maximal. Such critical (or saddle) points are found from the equation
with the complex derivative:

f ′(z) = 0

Indeed, since Re f(z) is harmonic and f(z) satisfies the Cauchy–Riemann equations, the condition
f ′(z) = 0 is equivalent to the condition that Re f(z) has zero gradient. Moreover, by harmonicity,
all critical points of Re f(z) are saddle-like.

Once the saddle points are identified, one deforms the contour γ to Γ so that Γ passes through
the saddle point(s) with the maximal value of Re f(z), and, moreover, such that on the rest of
the new contour Γ the real part of f(z) is strictly less than the value(s) at the saddle point(s).
The decrease of Re f(z) along Γ may be ensured if one picks Γ to be steepest descent for Re f(z).
By holomorphicity of f(z), the steepest descent of Re is equivalent to the condition that the
imaginary part of f(z) is constant along Γ.
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Remark 3.1. In practical applications, one does not need Γ to be fully steepest descent (it is
usually hard to control). One can either choose Γ to be steepest descent in a neighborhood of
the critical point and estimate the real part outside, or simply estimate the change of Re f(z)
directly along a given contour.

Remark 3.2. The function ϕ(z) might not be holomorphic, and might have poles. The deforma-
tion of the contour from γ to Γ might pick residues at these poles. These residues can be harmless
(easy to account for) or not (hard to account for; or affect the asymptotics of the integral), and
one has to be careful with the contour deformation.

Despite the caveats in Remarks 3.1 and 3.2, in what follows in this section we will discuss the
easiest case of steepest descent analysis. We also assume that there is only one saddle point z0
to take care of.

3.2 Saddle points and steepest descent paths

Definition 3.3 (Saddle point). A point z0 ∈ C is called a saddle point of f(z) if

f ′(z0) = 0.

We shall assume in what follows that at every saddle point under consideration the second
derivative satisfies

f ′′(z0) ̸= 0.

Definition 3.4 (Steepest descent path). Let z0 be a saddle point of f(z). A curve Γ ⊂ C passing
through z0 is called a steepest descent path for f(z) if along Γ the imaginary part of f(z) is
constant (i.e., Im

(
f(z)

)
= Im

(
f(z0)

)
for all z ∈ Γ), which implies that the real part Re

(
f(z)

)
decreases away from z0.

In a neighborhood of a saddle point z0,

z = z0 + w, f(z) = f(z0) +
1

2
f ′′(z0)w

2 +O(w3).

If we denote
f ′′(z0) = |f ′′(z0)|eiθ0 ,

then writing w = r eiφ, we obtain

f(z) = f(z0) +
1

2
|f ′′(z0)|r2ei(2φ+θ0) +O(r3).

For the imaginary part to remain constant in a neighborhood of z0, and, moreover, for the phase
of the quadratic term to be π modulo 2π, one must choose φ so that

2φ+ θ0 = π (mod 2π). (3.2)

We need the phase π so that the exponent is negative, for the integral to converge.
There are two directions satisfying (3.2) through z0, and we use both of them for our contour

Γ. Along these directions, one finds that

Re
(
f(z)

)
= Re

(
f(z0)

)
− 1

2
|f ′′(z0)|r2 +O(r3),

so that Re(f(z)) is maximal at z = z0 and decays quadratically as one moves away from z0 along
the steepest descent paths.
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3.3 Local asymptotic evaluation near a saddle point

Assume now that the contour γ in (3.1) has been deformed so that it passes through a saddle
point z0 along a steepest descent path. In a small neighborhood of z0, we write

z = z0 + w/
√
Λ,

so the local contribution of a neighborhood of z0 to the integral is

Iz0(Λ) = eΛf(z0)ϕ(z0)
1√
Λ

(
1 +O

( 1

Λ
1
2

)) ˆ ∞

−∞
e

1
2
f ′′(z0)w2

dw. (3.3)

Here the integration is taken along the steepest descent direction, so that the quadratic term in the
exponent is real and negative. (That is, by the choice (3.2), we have Re

(
f ′′(z0)w

2
)
= −|f ′′(z0)|r2.)

Then the Gaussian integral evaluates to

ˆ ∞

−∞
e−

|f ′′(z0)|
2

w2
dw =

√
2π

|f ′′(z0)|
.

Hence, we arrive at the following fundamental result.

Theorem 3.5 (Local asymptotics via steepest descent). Let z0 be a saddle point of f(z) with
f ′(z0) = 0 and f ′′(z0) ̸= 0, and assume that ϕ(z) is holomorphic in a neighborhood of z0. Then,
as Λ → +∞, the contribution of a small neighborhood of z0 to the integral (3.1) is given by

Iz0(Λ) ∼ eΛf(z0)ϕ(z0)

√
2π

Λ |f ′′(z0)|
, Λ → +∞. (3.4)

Moreover, the behavior (3.4) captures the full asymptotic behavior of the integral (3.1) as long as
on the new contour Γ, the real part of f(z) is maximized at z0 and is separated from Re f(z0)
everywhere else on Γ outside of a small neighborhood of z0.

Under appropriate assumptions (typically, if f and ϕ are holomorphic on a neighborhood that
can be reached by the deformed contour and if the contributions away from the saddle points
are exponentially small), one may show that the error in approximating the full integral by the
sum of the local contributions is itself exponentially small relative to the leading order terms. In
many cases, the next-order corrections can be computed by carrying the expansion in (3.3) to
higher order in w. (See, e.g., [Olv74] for a systematic treatment.)

4 Steepest descent for the GUE kernel

4.1 Scaling

Let us now consider the GUE kernel (2.5),

Kn(x, y) =
1

(2π)2

˛
C
dt

ˆ i∞

−i∞
ds

exp
{

s2

2 − sy − t2

2 + tx
}

s− t

(s
t

)n
,
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where the integration contours are as in Figure 1.
We know from the Wigner semicircle law (established for real symmetric matrices with general

iid entries in in Lecture 2, and for the GUE in Lecture 4) that the eigenvalues live on the scale√
n. This means that to capture the local asymptotics, we need to scale

x = X
√
n+

∆x√
n
, y = Y

√
n+

∆y√
n
, ∆x,∆y ∈ R. (4.1)

Moreover, if X ̸= Y (i.e., different global positions), one can check that the kernel vanishes. In
other words, the local behaviors at different global positions are independent. See Problem F.1.
In what follows, we take Y = X.

Let us also make a change of the integration variables:

t = z
√
n, s = w

√
n.

The integration contours for z and w look the same as in Figure 1, up to a rescaling. However,
as 0 and t = s are the only singularities in the integrand, we can deform the z, w contours as we
wish, while keeping |z| < |w| and the general shape as in Figure 1.

We thus have:

Kn(X
√
n+∆x/

√
n,X

√
n+∆y/

√
n)

=

√
n

(2π)2

˛
C
dz

ˆ i∞

−i∞
dw

exp
{
n
(
logw − log z + w2

2 − z2

2 +X(z − w) + z∆x−w∆y
n

)}
w − z

. (4.2)

Remark 4.1. The logarithms in the exponent are harmless, since for the estimates we only need
the real parts of the logarithms, and for the main contributions, we will have z ≈ w, so any
phases of the logarithms would cancel.

The asymptotic analysis of double contour integrals like (4.2) in the context of determinantal
point processes was pioneered in [Oko02, Section 3].

4.2 Critical points

Let us define

S(z) :=
z2

2
+ log z −Xz.

Then the exponent contains n (S(w)− S(z)). According to the steepest descent ideology, we
should deform the integration contours to pass through the critical point(s) zcr of S(z). More-
over, the new w contour should maximize the real part of S(z) at zcr, and the new z contour
should minimize it. If S′′(zcr) ̸= 0, it is possible to locally choose such contours, they will be
perpendicular to each other at zcr.

Thus, we need to find the critical points of S(z). They are found from the quadratic equation:

S′(z) = z +
1

z
−X = 0, zcr =

X ±
√
X2 − 4

2
. (4.3)

Depending on whether |X| < 2, there are three cases. Unless |X| = 2 (when equation (4.3) has
a single root), we have S′′(zcr) ̸= 0.

In this lecture, we focus on the density function, which is obtained by taking the asymptotics
of the kernel K(x, x). In the next Lecture 7, we discuss limits of the correlation functions.
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4.3 Imaginary critical points: |X| < 2, “bulk”

When |X| < 2, the critical points are complex conjugate. Denote them by zcr and zcr. Since
S(z) has real coefficients, we have

ReS(zcr) = ReS(zcr).

Thus, we need to consider the contribution from both points. The behavior of ReS(z) on the
complex plane can be illustrated by a 3D plot or by a region plot of the regions where ReS(z)−
ReS(zcr) has constant sign. See Figure 2 for an illustration in the case X = 1

2 .

-2 -1 0 1 2

-2

-1

0

1

2

Figure 2: A 3D plot and a region plot of the regions where ReS(z) − ReS(zcr) is positive
(highlighted) or negative, in the case X = 1

2 . In this case, zcr ≈ 0.25 + 0.96i.

From the region plot, we see that the new z contour should pass through the shaded region
ReS(z)−ReS(zcr) > 0, and the new w contour should pass through the unshaded region ReS(z)−
ReS(zcr) < 0.

Deforming the contours from Figure 1 to the new contours is impossible without passing
through the residue at w = z. Moreover, this residue appears only for certain values of z.
Namely, let us first make the z contour to be the positively (counterclockwise) oriented unit
circle. It passes through the critical points zcr and zcr. Since the original w contour is to the
right of the z contour, we only encounter the residue when z is in the right half of the arc.

Thus, we can write

‹
old contours

=

‹
new contours

+

ˆ zcr

zcr

2πi Resw=z dz, (4.4)

where in the single integral, the z contour passes to the right of the origin, along the right half
of the unit circle.

It remains to consider the two integrals in the right-hand side of (4.4). Recall that the
correlation functions are defined relative to a reference measure, and the right object to scale is

Kn(x, y)dy =
1√
n
Kn(X

√
n+∆x/

√
n,X

√
n+∆y/

√
n)d (∆y) .

The extra factor n−1/2 compensates the prefactor
√
n in (4.2).
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The single integral takes the form

−i
2π

ˆ zcr

zcr

dz =
sin(arg zcr)

π
. (4.5)

The double integral in (4.4) has both contours in the “steepest descent” regime, which means
that the main contribution is

const · e
n(ReS(zcr)−ReS(zcr))

√
n

∼ const√
n
.

At this rate, the double integral over the new contours does not contribute to the asymptotics of
the correlation functions. Recall that the correlation functions are expressed as finite-dimensional
determinants of the kernel Kn(x, y), and the error O(n−1/2) is negligible in the limit n → +∞.
This is because the main term comes from the single integral, which does not vanish.

Note that

zcr =
X ±

√
X2 − 4

2
, sin(arg zcr) =

√
4−X2

2
.

This again establishes the Wigner semicircle law for the GUE kernel.

Remark 4.2. This is already the third proof — we worked with trees, the tridiagonal form, and
now via steepest descent. The steepest descent method is the least general one, but it allows to
access local correlations in the bulk and at the edge.

We will consider other regimes, |X| > 2 and |X| = 2, in the next Lecture 7.

F Problems (due 2025-03-25)

F.1 Different global positions

Show that if in (4.1) we take X ̸= Y , then Kn(x, y) vanishes as n → +∞. Moreover, establish
the rate of decay in n. Is it power-law or exponential?

F.2 Sine kernel

Compute the integral (4.5).

F.3 Discrete sine process

Define the discrete sine kernel on Z by

Kdsine(x, y) :=


sin ρ(x− y)

π(x− y)
, x ̸= y,

ρ

π
, x = y,

where ρ ∈ [0, 1] is the density parameter.
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Let ρ = 1/2. Compute (numerically) the asymptotics of the two events under the discrete
sine process:

P
(
◦ ◦ . . . ◦︸ ︷︷ ︸
n times

• • . . . •︸ ︷︷ ︸
n times

)
, P

(
◦ • ◦ • . . . ◦ •︸ ︷︷ ︸

2n points

)
,

If the sine process was of independent random points (with the same density 1/2), both events
would have the same probability 2−2n. Which event is more favored by the sine process?
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