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1 Why study random matrices?

On the history. Random matrix theory (RMT) is a fascinating field that studies properties of
matrices with randomly generated entries, focusing (at least initially) on the statistical behavior
of their eigenvalues. This theory finds its roots in the domain of nuclear physics through the
pioneering work of Wigner, Dyson, and others [Wig55], [Dys62a], [Dys62b], who utilized it to
analyze the energy levels of complex quantum systems. Other, earlier roots include statistics
[Dix05] and classical Lie groups [Hur97]. Today, RMT has evolved to span a wide array of
disciplines, from pure mathematics, including areas such as integrable systems and representation
theory, to practical applications in fields like data science and engineering.

Classical groups and Lie theory. Random matrices are deeply connected to classical Lie
groups, particularly the orthogonal, unitary, and symplectic groups. This connection emerges
primarily due to the invariance properties of these groups, such as those derived from the Haar
measure. Random matrices significantly impact representation theory, linking to integrals over
matrix groups through character expansions. The symmetry classes of random matrix ensembles,
like the Gaussian Orthogonal (GOE), Unitary (GUE), and Symplectic (GSE), correspond to
respective symmetry groups.

Toolbox. RMT utilizes a broad range of tools ranging across all of mathematics, including
probability theory, combinatorics, analysis (classical and modern), algebra, representation theory,
and number theory. The theory of random matrices is a rich source of problems and techniques
for all of mathematics.

The main content of this course is to explore the toolbox around random matrices, including
going into discrete models like dimers and statistical mechanics. Some of this will be included
in the lectures, and some other topics will be covered in the reading course component, which is
individualized.

Applications. Random matrix theory finds applications across a diverse set of fields. In nu-
clear physics, random matrix ensembles serve as models for complex quantum Hamiltonians,
thereby explaining the statistics of energy levels. In number theory, connections have been drawn
between random matrices and the Riemann zeta function, particularly concerning the distribu-
tion of zeros on the critical line. Wireless communications benefit from random matrix theory
through the analysis of eigenvalue distributions, which helps in understanding channel capacity
in multi-antenna (MIMO) systems. In the burgeoning field of machine learning, random weight
matrices and their spectra are key to analyzing neural networks and their generalization capabil-
ities. High-dimensional statistics and econometrics also draw on random matrix tools for tasks
such as principal component analysis and covariance estimation in large datasets. Additionally,
combinatorial random processes exhibit connections to random permutations, random graphs,
and partition theory, all through the lens of matrix integrals.
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2 Recall Central Limit Theorem

2.1 Central Limit Theorem and examples

We begin by establishing the necessary groundwork for understanding and proving the Central
Limit Theorem. The theorem’s power lies in its remarkable universality: it applies to a wide
variety of probability distributions under mild conditions.

Definition 2.1. A sequence of random variables {Xi}∞i=1 is said to be independent and identically
distributed (iid) if:

• Each Xi has the same probability distribution as every other Xj , for all i, j.

• The variables are mutually independent, meaning that for any finite subset {X1, X2, . . . , Xn},
the joint distribution factors as the product of the individual distributions:

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = P(X1 ≤ x1)P(X2 ≤ x2) · · ·P(Xn ≤ xn).

Theorem 2.2 (Classical Central Limit Theorem). Let {Xi}∞i=1 be a sequence of iid random
variables with finite mean µ = E[Xi] and finite variance σ2 = Var(Xi). Define the normalized
sum

Zn =
1√
n

n∑
i=1

(Xi − µ) . (2.1)

Then, as n → ∞, the distribution of Zn converges in distribution to a normal random variable
with mean 0 and variance σ2, i.e.,

Zn
d−→ N (0, σ2).

Convergence in distribution means

lim
n→∞

P(Zn ≤ x) = P(Z ≤ x) =

∫ x

−∞

1√
2πσ2

e−
t2

2σ2 dt for all x ∈ R, (2.2)

where Z ∼ N (0, σ2) is the Gaussian random variable.

Remark 2.3. For a general random variable instead of Z ∼ N (0, σ2), the convergence in distri-
bution (2.2) holds only for x at which the cumulative distribution function of Z is continuous.
Since the normal distribution is absolutely continuous (has density), the convergence holds for
all x.

Example 2.4. Let {Xi}∞i=1 be a sequence of iid Bernoulli random variables with parameter p,
meaning that each Xi takes the value 1 with probability p and 0 with probability 1 − p. The
mean and variance of each Xi are given by:

µ = E[Xi] = p, σ2 = Var(Xi) = p(1− p).

We also have the distribution of X1 + · · ·+Xn:

P (X1 + · · ·+Xn = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.
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Figure 1: Densities of U1, U1+U2, U1+U2+U3 (where Ui are iid uniform on [0, 1]), and N (0, 1),
normalized to have the same mean and variance.

Introduce the normalized quantity

z =
k − np√
np(1− p)

, (2.3)

and assume that throughout the asymptotic analysis, this quantity stays finite.
Our aim is to show that, for k such that z remains bounded as n → ∞, the following holds:

P(Sn = k) =
1√

2πnp(1− p)
exp
(
−z2

2

)
(1 + o(1)).

For large n, Stirling’s formula gives

m! ∼
√
2πmmme−m, as m → ∞.

Apply Stirling’s approximation to n!, k!, and (n− k)!:

n! ∼
√
2πnnne−n, k! ∼

√
2πk kke−k, (n− k)! ∼

√
2π(n− k) (n− k)n−ke−(n−k).

Thus,(
n

k

)
∼

√
2πnnne−n

√
2πk kke−k

√
2π(n− k) (n− k)n−ke−(n−k)

=
nn

kk(n− k)n−k

1√
2π k(n− k)/n

.

More precisely, one often writes(
n

k

)
∼ 1√

2πnp(1− p)
exp
(
n lnn− k ln k − (n− k) ln(n− k)

)
,

where p ≈ k/n thanks to the fact that z (2.3) is assumed to be finite.
We have

k = np+ z
√
np(1− p).
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Then, consider the second-order Taylor expansion. We have

n lnn− k ln k − (n− k) ln(n− k) ∼ nH − z2

2
,

whereH = −[p ln p+(1−p) ln(1−p)]+c(z; p)/
√
n (for an explicit function c(z; p)) is the “entropy”

term which exactly cancels with the prefactors coming from pk(1− p)n−k.
After combining the approximations from the binomial coefficient and the probability weights,

one arrives at

P(Sn = k) ∼ 1√
2πnp(1− p)

exp

(
−z2

2

)
,

as desired.
(Note that this is a local CLT as opposed to the convergence (2.2) in the classical CLT; but

one can get the latter from the local CLT by integration.)

2.2 Moments of the normal distribution

Proposition 2.5. The moments of a random variable Z ∼ N (0, σ2) are given by:

E[Zk] =

{
0, if k is odd,

σk(k − 1)!! = σk · (k − 1)(k − 3) · · · 1, if k is even.
(2.4)

Proof. We just compute the integrals. Assume k is even (for odd, the integral is zero by symme-
try). Also assume σ = 1 for simplicity. Then

E[Zk] =
1√
2π

∫ ∞

−∞
zke−z2/2 dz.

Applying integration by parts (putting ze−z2/2 under d), we get

E[Zk] =
1√
2π

[
−zk−1e−z2/2

]∞
−∞

+
k − 1√

2π

∫ ∞

−∞
zk−2e−z2/2 dz.

The first term vanishes at infinity (you can verify this using L’Hôpital’s rule), leaving us with:

E[Zk] = (k − 1)E[Zk−2].

This gives us a recursive formula, and completes the proof.

2.3 Moments of sums of iid random variables

Let us now show the CLT by moments. For example, the source is [Bil95, Section 30] or [Fil10].

Remark 2.6. This proof requires an additional assumption that all moments of the random
variables are finite. This is quite a strong assumption, and while the CLT holds without it, this
proof by moments is more algebraic, and will translate to random matrices more directly.
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2.3.1 Computation of moments

Denote Yi = Xi − µ, these are also iid, but have mean 0. We consider

E

( n∑
i=1

Yi

)k
 .

Expanding the k-th power using the multinomial theorem, we obtain:(
n∑

i=1

Yi

)k

=
∑

j1+j2+···+jn=k

Yj1Yj2 . . . Yjn .

Taking the expectation and using linearity, we have:

E

( n∑
i=1

Yi

)k
 =

∑
j1+j2+···+jn=k

E [Yj1Yj2 . . . Yjn ] .

The sum over all j1, . . . , jn with j1 + . . . + jn = k is the number of ways to partition k into n
non-negative integers. We can order these integers, and thus obtain the sum over all partitions
of k into ≤ n parts. Since n is large, we simply sum over all partitions of k. For each partition λ
of k (where k = λ1 + λ2 + . . . + λn and λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0), we must count the number of
distinct multisets of indices (j1, j2, . . . , jn) that yield the same collection {λ1, λ2, . . .}. Then,

E [Yj1Yj2 . . . Yjn ] = mλ1mλ2 . . .mλn ,

where mj = E[Y j ] (recall the identical distribution of Yi). Note that m0 = 1 and m1 = 0. Let us
illustrate this with an example.

Example 2.7. For k = 4, there are only two partitions which have no parts equal to 1: λ = (4)
and λ = (2, 2). The number of ways to get (4) (so that E[Yj1Yj2Yj3Yj4 ] = m4) is to just assign
one of the jp to be 4, this can be done in n ways.

The number of ways to get (2, 2) (so that E[Yj1Yj2Yj3Yj4 ] = m2
2) is to assign two of the jp

to be 2 and the other two to be 0, this can be done in
(
n
2

)
ways. Moreover, there are also 6

permutations of the indices jp = (i, j) which give the same partition (2, 2): (i, i, j, j), (j, j, i, i),
(i, j, i, j), (j, i, j, i), (i, j, j, i), (j, i, i, j). Thus, the total number of ways to get (2, 2) is 6

(
n
2

)
∼ 3n2.

So, we see that there is an n-dependent factor, and a “combinatorial” factor for each partition.

2.3.2 n-dependent factor

Consider first the n-dependent factor. In the case k is even and λ = (2, 2, . . . , 2), the power of n
is nk/2. In the case k is even and λ has at least one part ≥ 3, the power of n is at most nk/2−1,
which is subleading in the limit n → ∞. When k is odd, the “best” we can do (without parts
equal to 1) is going to be λ = (3, 2, . . . , 2) with (k − 1)/2 parts, so the power of n is n(k−1)/2.
This is also subleading in the limit n → ∞.
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2.3.3 Combinatorial factor

Now, we see that we only need to consider the case when k is even and all parts of λ are 2. Then,
the n-dependent factor is

(
n
k/2

)
∼ nk/2/(k/2)!. The combinatorial factor is equal to the number

of ways to partition k into pairs, which is the double factorial:

(k − 1)!! = (k − 1)(k − 3) . . . 1,

times the number of permutations of the k/2 indices which are assigned to the pairs, so (k/2)!.
In particular, for k = 4 this is 6.

2.3.4 Putting it all together

We have as n → ∞:

E

( n∑
i=1

Yi

)k
 = nk/2 (k − 1)!!

(k/2)!
· (k/2)!σk + o(nk/2) = nk/2(k − 1)!!σk + o(nk/2).

Now, we need to consider the normalization of the sum
∑n

i=1 Yi by
√
n:

E

( 1√
n

n∑
i=1

Yi

)k
 =

1

nk/2
E

( n∑
i=1

Yi

)k
 = (k − 1)!!σk + o(1).

Therefore, the moments of Zn (2.1) converge to the moments of the standard normal distribution.

2.4 Convergence in distribution

Is convergence of moments enough to imply convergence in distribution? Not necessarily. First,
note that the functions x 7→ xk are not even bounded on R.

A sufficient condition for convergence in distribution is found in the classical method of mo-
ments in probability theory [Bil95, Theorem 30.2]. This theorem states that if the limiting
distribution X is uniquely determined by its moments, then convergence in moments implies
convergence in distribution.

The normal distribution is indeed uniquely determined by its moments (Problem A.5), so the
CLT holds in this case, provided that the original iid random variables Xi have finite moments
of all orders.

3 Random matrices and semicircle law

We now turn to random matrices.

3.1 Where can randomness in a matrix come from?

The study of random matrices begins with understanding how randomness can be introduced
into matrix structures. We consider three primary sources:
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1. iid entries: The simplest form of randomness comes from filling matrix entries indepen-
dently with samples from a fixed probability distribution. For an n × n matrix, this gives
us n2 independent random variables. If we do not impose any additional structure on the
matrix, then the eigenvalues will be complex. So, often we consider real symmetric, complex
Hermitian, or quaternionic matrices with symplectic symmetry.1

2. Correlated entries: In many physical systems, especially those modeling local interac-
tions, matrix entries are not independent but show correlation patterns. Common examples
include:

• Band matrices, where entries become negligible far from the diagonal

• Matrices with correlation decay based on the distance between indices

• Structured random matrices arising from specific physical models

• Sparse matrices, where most entries are zero

3. Haar measure on matrix groups: Randomness can come from considering matrices
sampled according to the Haar measure on a compact matrix group, for example, the
orthogonal O(n), unitary U(n), or symplectic group Sp(n).2 One can think of this as a
generalization of the uniform distribution (Lebesgue measure) on the unit circle in C, or
a unit sphere in Rn. One can also mix and match: one of the most interesting families of
random matrices is the one with constant eigenvalues, but random eigenvectors:

A = UDλU
†, U ∈ U(n), U ∼ Haar.

Here Dλ is a diagonal matrix with constant eigenvalues λ = (λ1, . . . , λn). The random
matrix A is the “uniform” random variable taking values in the set of all Hermitian matrices
with fixed real eigenvalues λ. Here we may assume that λ1 ≥ . . . ≥ λn, since the unitary
conjugation can permute the eigenvalues.

3.2 Real Wigner matrices

Definition 3.1 (Real Wigner Matrix). An n × n random matrix W = Wn = (Xij)1≤i,j≤n is
called a real Wigner matrix if:

1. W is symmetric: Xij = Xji for all i, j;

2. The upper triangular entries {Xij : 1 ≤ i ≤ j ≤ n} are independent;

1Real symmetric means A⊤ = A, complex Hermitian means A† = A (conjugate transpose). Let us briefly
discuss the quaternionic case. It can be modeled over C. A quaternion q = a+ b i+ c j+ dk can be represented by
the complex 2× 2 matrix

q 7−→
(

a+ ib c+ id
−c+ id a− ib

)
.

The entries a, b, c, d for the quaternion matrix case must be real, and the matrix A of size 2n× 2n should also be
Hermitian in the usual complex sense.

2The orthogonal and unitary groups are defined in the usual way, by OO⊤ = O⊤O = I and UU† = U†U = I,
respectively. The group Sp(n) is the compact real form of the full symplectic group Sp(2n,C), consisting of 2n×2n
matrices A such that A⊤JA = J , where J is the skew-symmetric form.
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3. The diagonal entries {Xii} are iid real random variables with mean 0 and variance σd;

4. The upper triangular entries {Xij : i < j} are iid (possibly with a distribution different
from the diagonal entries) real random variables with mean 0 and variance σ;

5. (optional, but we assume this) All entries have finite moments of all orders.

Example 3.2 (Gaussian Wigner Matrices, Gaussian Orthogonal Ensemble (GOE)). Let W be
a real Wigner matrix where:

• Diagonal entries Xii ∼ N (0, 2);

• Upper triangular entries Xij ∼ N (0, 1) for i < j.

We can model W as (Y + Y ⊤)/
√
2, where Y is a matrix with iid Gaussian entries Yij ∼ N (0, 1).

The matrix distribution of W is called the Gaussian Orthogonal Ensemble (GOE ).

Remark 3.3 (Wishart Matrices). There are other ways to define random matrices, most notably,
sample covariance matrices. Let A = [ai,j ]

n,m
i,j=1 be an n×m matrix (n ≤ m), where entries are iid

real random variables with mean 0 and finite variance. Then M = AA⊤ is a positive symmetric
random matrix of size n× n. It almost surely has full rank.

3.3 Empirical spectral distribution

For an arbitrary random matrix of size n× n with real eigenvalues, the empirical spectral distri-
bution (ESD) is defined as the random probability measure on R:

µn =
1

n

n∑
i=1

δλi
, (3.1)

which puts point masses of size 1/n at the eigenvalues λi of the matrix.
If you sample the ESD for a large real Wigner matrix, and take a histogram (to cluster the

eigenvalues into boxes), you will see the semi-circular pattern. This pattern does not change
over several samples. Hence, one can conjecture that the ESD (3.1) converges to a nonrandom
measure, after rescaling.

We can guess the rescaling by looking at the first two moments of the ESD. The first moment
is ∫

R
xµn(dx) =

1

n

n∑
i=1

λi =
1

n
Tr(W ) =

1

n

n∑
i=1

Xii, (3.2)

and this sum has mean zero (and small variance), so it converges to zero. The second moment is∫
R
x2 µn(dx) =

1

n

n∑
i=1

λ2
i =

1

n
Tr(W 2) =

1

n

n∑
i,j=1

X2
ij . (3.3)

This sum has mean ∼ σ2n2, so even normalized by n, it still goes to infinity. But, if we normalize
the matrix as 1√

n
W , then the second moment becomes bounded, and one can convince oneself

that the ESD of the normalized Wishart matrix has a limit. Indeed, this is the case:
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Theorem 3.4 (Wigner’s Semicircle Law). Let W be a real Wigner matrix of size n × n (with
off-diagonal entries having a fixed variance σ2, independent of n). Then as n → ∞, the ESD of
W/(σ

√
n) converges in distribution to the semicircular law:

νn :=
1

n

n∑
i=1

δλi/
√
n −→ µsc, (3.4)

where µsc is the semicircular distribution with density with respect to the Lebesgue measure:

µsc(dx) :=
1

2π

√
4− x21|x|≤2dx. (3.5)

Remark 3.5. The convergence in (3.4) may mean either weakly in probability or weakly almost
surely. The first notion, weak convergence in probability, means that for every bounded continu-
ous function f , we have ∫

R
f(x) νn(dx) −→

∫
R
f(x)µsc(dx), n → ∞, (3.6)

where in (3.6) the convergence is in probability. Indeed, the left-hand side of (3.6) is a random
variable, so we need to qualify which sense of convergence we mean.

The weakly almost sure convergence means that the convergence in (3.6) holds for almost
all realizations of the random matrix W , that is, for every bounded continuous function f , the
random variable

∫
R f(x) νn(dx) converges almost surely to

∫
R f(x)µsc(dx).

Remark 3.6. There exists a version of the limiting ESD for the Wishart matrices (Remark 3.3).
In this case, the limiting distribution is the Marchenko-Pastur law [MP67].

3.4 Expected moments of traces of random matrices

The main computation in the proof of Theorem 3.4 is the computation of expected moments of
the ESD. This computation of moments is somewhat similar to the one in the proof of the CLT
by moments, but has its own random matrix flavor.

Definition 3.7 (Normalized Moments). For each k ≥ 1, the normalized k-th moment of the
empirical spectral distribution of Wn/

√
n is given by

m
(n)
k =

∫
R
xk νn(dx) =

1

nk/2+1
Tr(W k).

Our first goal is to study the asymptotic behavior of E[m(n)
k ] as n → ∞ for each fixed k ≥ 1,

just like we did in (3.2)–(3.3) for k = 1, 2:

E[m(n)
1 ] = 0, E[m(n)

2 ] → σ2.

Note that E[m(n)
2 ] is not exactly equal to σ2 because of the presence of the diagonal elements

which have a different distribution. In general, we will see that the contribution of the diagonal
elements to the moments is negligible in the limit n → ∞.

10



Lemma 3.8 (Convergence of Expected Moments). For each fixed k ≥ 1, we have

lim
n→∞

E[m(n)
k ] =

{
0 if k is odd,

σkCk/2 if k is even,

where Cm = 1
m+1

(
2m
m

)
is the m-th Catalan number.

The even moments are scaled by powers of σ just as in the case k = 2, while the odd
moments vanish due to the symmetry of the limiting distribution around zero. As we will see, the
appearance of Catalan numbers is not accidental, but it is due to the underlying combinatorics.

Proof of Lemma 3.8. The trace of W k expands as a sum over all possible index sequences:

Tr(W k) =
n∑

i1,...,ik=1

Xi1i2Xi2i3 · · ·Xik−1ikXiki1 . (3.7)

Due to independence and the fact that E[Xij ] = 0 for all i, j, the only nonzero contributions come
from index sequences where each matrix element appears least twice.

As in the CLT proof, there is a power-n factor and a combinatorial factor.
For k odd, let us count the power of n first. As in the CLT proof, the maximum power

comes from index sequences where all matrix elements appear exactly twice except for one which
appears three times. Indeed, this corresponds to the maximum freedom of choosing k indices
among the large number n of indices, and thus to the maximum power of n. This maximum
power of n is n1+⌊k/2⌋ (note that there is an extra factor n compared to the CLT proof, as now
we have ∼ n2 random variables in the matrix instead of n). Since this is strictly less than the

normalization nk/2+1 in m
(n)
k , the term with odd k vanish in the limit n → ∞.

Assume now that k is even. Then the maximum power of n comes from index sequences where
each matrix element appears exactly twice. This power of n is nk/2+1, which exactly matches the

normalization in m
(n)
k .

It remains to count the combinatorial factor, assuming that k is even. For each term in the
trace expansion, we can represent the sequence of indices (i1, . . . , ik) as a directed closed path
with vertices {1, . . . , n} and edges given by the matrix entries Xiaia+1 . For example, if k = 4 and
we have a term X12X23X34X41, this corresponds to the path 1 → 2 → 3 → 4 → 1. Recall that
our path must have each matrix entry exactly twice (within the symmetry Xij = Xji), and the
path must be closed. The condition that each edge appears exactly twice means that if we forget
the direction of the edges and the multiplicities, we must get a tree, with k/2 edges and k/2 + 1
vertices. The complete justification of this counting is the problem in Problem A.9.

The n-powers counting implies that the combinatorial factor (for even k) is equal to σk times
the number of rooted (planar) trees with k/2 edges. The rooted condition comes from the fact
that we are free to fix the starting point of the path to be 1 (this ambiguity is taken into account
by the power-n factor).

In Problem A.10, we show that the number of these rooted trees is the k/2-th Catalan number
Ck/2. This completes the proof of Lemma 3.8.

11



3.5 Immediate next steps

The proof of Theorem 3.4 is continued in the next Lecture 2. Immediate next steps are:

1. Show that the number of rooted trees with k/2 edges is the k/2-th Catalan number, and
give the exact formula for the Catalan numbers.

2. Compute the moments of the semicircular distribution.

3. Make sure that the moment computation suffice to show the weak in probability convergence
of the ESD to the semicircular law.

A Problems (due 2025-02-13)

Each problem is a subsection (like Problem A.1), and may have several parts.

A.1 Normal approximation

1. In Figure 1, which color is the normal curve and which is the sum of three uniform random
variables?

2. Show that the sum of 12 iid uniform random variables on [−1, 1] (without normalization)
is approximately standard normal.

3. Find (numerically is okay) the maximum discrepancy between the distribution of the sum
of 12 iid uniform random variables on [−1, 1] and the standard normal distribution:

sup
x∈R

∣∣∣∣∣P
(

12∑
i=1

Ui ≤ x

)
− P (Z ≤ x)

∣∣∣∣∣ .
A.2 Convergence in distribution

Convergence in distribution Xn → X for real random variables Xn and X means, by definition,
that

E[f(Xn)] → E[f(X)]

for all bounded continuous functions f . Show that convergence in distribution is equivalent to
the condition outlined in (2.2):

lim
n→∞

P(Xn ≤ x) = P(X ≤ x)

for all x at which the cumulative distribution function of X is continuous.

A.3 Moments of sum justification

Justify the computations of the power of n in Section 2.3.2.
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A.4 Distribution not determined by moments

Show that the log-normal random variable eZ (where Z ∼ N (0, 1)) is not determined by its
moments.

A.5 Uniqueness of the normal distribution

Show that the normal distribution is uniquely determined by its moments.

A.6 Quaternions

Show that the 2 × 2 matrix representation of a quaternion given in Footnote 1 indeed satisfies
the quaternion multiplication rules. Hint: Use linearity and distributive law.

A.7 Ensemble UDλU
†

Let U be the random Haar-distributed unitary matrix of size N × N . Let Dλ be the diagonal
matrix with constant real eigenvalues λ = (λ1, . . . , λN ), λ1 ≥ . . . ≥ λN . Let us fix λ to be, say,
λ = (1, 1, . . . , 1, 0, 0, . . . , 0), for some proportion of 1’s and 0’s (you can start with half ones and
half zeros).

Use a computer algebra system to sample the eigenvalues of the matrix obtained from UDλU
†

by taking only its top-left corner of size k × k, where k = 1, 2, . . . , N . For a fixed k, let λ
(k)
1 ≥

. . . ≥ λ
(k)
k be the eigenvalues of the top-left corner of size k × k. Plot the two-dimensional array{

(λ
(k)
i , k) : i = 1, . . . , k, k = 1, . . . , N

}
⊂ R× Z≥1.

A.8 Invariance of the GOE

Show that the distribution of the GOE is invariant under conjugation by orthogonal matrices:

P(OWO⊤ ∈ A) = P(W ∈ A)

for all orthogonal matrices O and Borel sets A.

A.9 Counting n-powers in the real Wigner matrix

Show that in the expansion of the expected trace of the k-th power of the real Wigner matrix,
the maximum power of n is k/2 + 1 for even k and less for odd k. For even k, the power k/2 + 1
comes from index sequences where each off-diagonal matrix element appears exactly twice, and
no diagonal elements are present.

A.10 Counting trees

Show that the number of rooted trees with m edges is the m-th Catalan number:

Cm =
1

m+ 1

(
2m

m

)
.
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1 Recap

We are working on the Wigner semicircle law.

1. Wigner matrices W : real symmetric random matrices with iid entries Xij , i > j (mean 0,
variance σ2); and iid diagonal entries Xii (mean 0, some other variance and distribution).

2. Empirical spectral distribution (ESD)

νn =
1

n

n∑
i=1

δλi/
√
n,

which is a random probability measure on R.

3. Semicircle distribution µsc:

µsc(dx) =
1

2π

√
4− x2 dx, x ∈ [−2, 2].

4. Computation of expected traces of powers of W (with variance 1). We showed that∫
R
xk νn(dx) → # {rooted planar trees with k/2 edges} .

Remark 1.1. If the off-diagonal elements of the matrix have variance σ2, then the semicircle
distribution should be scaled to be supported on [−2σ, 2σ]. We assume that the variance of the
off-diagonal elements is 1 in most arguments throughout the lecture.

2 Two computations

First, we finish the combinatorial part, and match the limiting expected traces of powers of W
to moments of the semicircle law.

2.1 Moments of the semicircle law

We also need to match the Catalan numbers to the moments of the semicircle law. Let k = 2m,
and we need to compute the integral∫ 2

−2
x2m

1

2π

√
4− x2 dx.

By symmetry, we write: ∫ 2

−2
x2mρ(x) dx =

2

π

∫ 2

0
x2m

√
4− x2 dx.

Using the substitution x = 2 sin θ, we have dx = 2 cos θ dθ. The integral becomes:

2

π

∫ π/2

0
(2 sin θ)2m(2 cos θ)(2 cos θ dθ) =

22m+2

π

∫ π/2

0
sin2m θ cos2 θ dθ.
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Using cos2 θ = 1− sin2 θ, we split the integral:

22m+2

π

(∫ π/2

0
sin2m θ dθ −

∫ π/2

0
sin2m+2 θ dθ

)
.

Using the standard formula (cf. Problem B.1)∫ π/2

0
sin2n θ dθ =

π

2

(2n)!

22n(n!)2
, (2.1)

we compute each term:

22m+2

π

(
π

2

(2m)!

22m(m!)2
− π

2

(2m+ 2)!

22m+2((m+ 1)!)2

)
.

After simplification, this becomes Cm, the m-th Catalan number.

2.2 Counting trees and Catalan numbers

Throughout this section, for a random matrix trace moment of order k, we use m = k/2 as our
main parameter. Note that m can be arbitrary (not necessarily even).

Definition 2.1 (Dyck Path). A Dyck path of semilength m is a sequence of 2m steps in the
plane, each step being either (1, 1) (up step) or (1,−1) (down step), starting at (0, 0) and ending
at (2m, 0), such that the path never goes below the x-axis. We denote an up step by U and a
down step by D.

Definition 2.2 (Rooted Plane Tree). A rooted plane tree is a tree with a designated root vertex
where the children of each vertex have a fixed left-to-right ordering. The size of such a tree is
measured by its number of edges, which we denote by m.

Definition 2.3 (Catalan Numbers). The sequence of Catalan numbers {Cm}m≥0 is defined re-
cursively by:

C0 = 1, Cm+1 =
m∑
j=0

CjCm−j for m ≥ 0. (2.2)

Alternatively, they have the closed form1

Cm =
1

m+ 1

(
2m

m

)
=

(
2m

m

)
−
(

2m

m+ 1

)
. (2.3)

These numbers appear naturally in the moments of random matrices, where m = k/2 for trace
moments of order k.

Lemma 2.4. Formulas (2.2) and (2.3) are equivalent.

1See Problem B.4 for a combinatorial proof of the second inequality.
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Proof. One can check that the closed form satisfies the recurrence relation by direct substitu-
tion. The other direction involves generating functions. Namely, (2.2) can be rewritten for the
generating function

C(z) =

∞∑
m=0

Cmzm

as
C(z) = 1 + zC(z)2.

Solving for C(z), we get

C(z) =
1±

√
1− 4z

2z
. (2.4)

We need to pick the solution which is nonsingular at z = 0, and it corresponds to the minus sign.
Taylor expansion of the right-hand side of (2.4) at z = 0 gives the closed form.

Remark 2.5. Catalan numbers enumerate many (too many!) combinatorial objects. For a
comprehensive treatment, see [Sta15].

Proposition 2.6 (Dyck Path–Rooted Tree Correspondence). For any m, there exists a bijection
between the set of Dyck paths of semilength m and the set of rooted plane trees with m edges.

Proof. Given a Dyck path of semilength m, we build the corresponding rooted plane tree as
follows (see Figure 1 for an illustration):

1. Start with a single root vertex

2. Read the Dyck path from left to right:

• For each up step (U), add a new child to the current vertex

• For each down step (D), move back to the parent of the current vertex

3. The order of children is determined by the order of up steps

This is clearly a bijection, and we are done.

x

y

UUDD

1

2

3

x

y

UDUD

1

2 3

Figure 1: The two possible Dyck paths of semilength m = 2 and their corresponding rooted plane
trees.
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It remains to show that the Dyck paths or rooted plane trees are counted by the Catalan
numbers, by verifying the recursion (2.2) for them. By Proposition 2.6, it suffices to consider
only Dyck paths.

Proposition 2.7. The number of Dyck paths of semilength m satisfies the Catalan recurrence
(2.2).

Proof. We need to show that the number of Dyck paths of semilength m+1 is given by the sum
in the right-hand side of (2.2). Consider a Dyck path of semilength m+ 1, and let the first time
it returns to zero be at semilength j + 1, where j = 0, . . . ,m. Then the first and the (2j + 1)-st
steps are, respectively, U and D. From 0 to 2j + 2, the path does not return to the x-axis, so
we can remove the first and the (2j + 1)-st steps, and get a proper Dyck path of semilength j.
The remainder of the Dyck path is a Dyck path of semilength m − j. This yields the desired
recurrence.

x

y

Figure 2: Illustration of a Dyck path decomposition for the proof of Proposition 2.7.

3 Analysis steps in the proof

We are done with combinatorics, and it remains to justify that the computations lead to the
desired semicircle law from Lecture 1.

Let us remember that so far, we showed that

lim
n→∞

1

nk/2+1
E
[
TrW k

]
=

{
σ2mCm if k = 2m is even,

0 if k is odd.

Here, W is real Wigner (unnormalized) with mean 0, where its off-diagonal entries are iid with
variance σ2.

3.1 The semicircle distribution is determined by its moments

We use (without proof) the known Carleman’s criterion for the uniqueness of a distribution by
its moments.

5
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Proposition 3.1 (Carleman’s criterion [ST43, Theorem 1.10], [Akh65]). Let X be a real-valued
random variable with moments mk = E[Xk] of all orders. If

∞∑
k=1

(m2k)
−1/(2k) = ∞, (3.1)

then the distribution of X is uniquely determined by its moments (mk)k≥1.

Remark 3.2. Note that we do not assume that the measure is symmetric, but use only even
moments for the Carleman criterion. Indeed, in determining uniqueness, the decisive aspect
is how the distribution mass “escapes” to ±∞. Since

∫
|x|ndµ(x) can be bounded by twice∫

x2⌊n/2⌋dµ(x) (roughly speaking), controlling
∫
x2ndµ(x) also controls

∫
|x|ndµ(x). Thus, one

does not need to worry about positive or negative signs in x; the even powers handle both sides
of the real line at once.

Moreover, the convergence of (3.1), as for any infinite series, is only determined by arbitrarily
large moments, for the same reason.

Remark 3.3. By the Stone-Wierstrass theorem, the semicircle distribution on [−2, 2] is unique
among distributions with an arbitrary, but fixed compact support with the moments σ2kCk.
However, we need to guarantee that there are no distributions on R with the same moments.

Now, the moments satisfy the asymptotics

m2k = Ckσ
2k ∼ 4k

k3/2
√
π
σ2k,

so
∞∑
k=1

(m2k)
−1/(2k) ∼

∞∑
k=1

(
k3/2

√
π

4k

)1/2k

σ−1.

The k-th summands converges to 1/(2σ), so the series diverges.

Remark 3.4. See also Problem A.4 from Lecture 1 on an example of a distribution not deter-
mined by its moments.

3.2 Convergence to the semicircle law

Recall [Bil95, Theorem 30.2] that convergence of random variables in moments plus the fact
that the limiting distribution is uniquely determined by its moments implies convergence in
distribution. However, we need weak convergence in probability or almost surely (see the previous
Lecture 1). which deals with random variables∫

R
f(x) νn(dx), f ∈ Cb(R),

and we did not compute the moments of these random variables.
To complete the argument, let us show that for each fixed integer k ≥ 1, we have almost sure

convergence of the moments (of a random distribution, so that the Yn,k’s are random variables):

Yn,k :=

∫
R
xk νn(dx)

a.s.−−−→
n→∞

mk, n → ∞,
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where mk are the moments of the semicircle distribution, and νn is the ESD corresponding to the
scaling of the eigenvalues as λi/

√
n.

As typical in asymptotic probability, we not only need the expectation of Yn,k, but also their
variances, to control the almost sure convergence. Recall that we showed E(Yn,k) → mk. Let us
assume the following:

Proposition 3.5 (Variance bound). For each fixed integer k ≥ 1 and large enough n, we have

Var(Yn,k) ≤
mk

n2
.

We will prove Proposition 3.5 in Section 4 below. Let us finish the proof of convergence to
the semicircle law modulo Proposition 3.5.

3.2.1 A concentration bound and the Borel–Cantelli lemma

From Chebyshev’s inequality,

P
(∣∣Yn,k − E[Yn,k]

∣∣ ≥ n− 1
4

)
≤ Var[Yn,k]

√
n = O(n− 3

2 ),

where in the last step we used Proposition 3.5.
Hence the probability that |Yn,k − E[Yn,k]| > n− 1

4 is summable in n. By the Borel–Cantelli
lemma, with probability 1 only finitely many of these events occur. Since E[Yn,k] → mk, we
conclude ∣∣Yn,k −mk

∣∣ ≤
∣∣Yn,k − E[Yn,k]

∣∣+ ∣∣E[Yn,k]−mk

∣∣ −−−→
n→∞

0 almost surely.

3.2.2 Tightness of {νn} and subsequential limits

Since |Yn,k| =
∣∣∫ xk νn(dx)

∣∣ stays almost surely bounded for each k, one readily checks (Problem
B.5) that almost surely, for each fixed k,

νn
(
{x : |x| > M}

)
≤ C

Mk
. (3.2)

By choosing k large, we see that νn puts arbitrarily little mass outside any large interval [−m,m].
Thus, the sequence of probability measures {νn} is tight. By Prokhorov’s theorem [Bil95, The-
orem 25.10], there exists a subsequence νnj converging weakly to some probability measure ν∗.
We will now characterize all subsequential limits ν∗ of νn.

3.2.3 Characterizing the limit measure

We claim that ν∗ = µsc, the semicircle distribution (and in particular, this measure is not random).
Indeed, fix k. Since xk is a bounded function on a sufficiently large interval, and νnj → ν∗ weakly,
we have ∫

R
xk νnj (dx) →

∫
R
xk ν∗(dx).

7



On the other hand, we have already shown∫
R
xk νnj (dx) = Ynj ,k

a.s.−−−→
j→∞

mk =

∫
R
xk µsc(dx).

Thus ∫
R
xk ν∗(dx) = mk =

∫
R
xk µsc(dx) for all k ≥ 1.

By Proposition 3.1, the measure ν∗ is uniquely determined by its moments. Hence ν∗ must
coincide with µsc.

Remark 3.6. In Sections 3.2.2 and 3.2.3 we tacitly assumed that we choose an elementary
outcome ω, and view νn as measures depending on ω. Then, since the convergence of moments
is almost sure, ω belongs to a set of full probability. The limiting measure ν∗ must coincide with
µsc for this ω, and thus, ν∗ is almost surely nonrandom.

Any subsequence of {νn} has a further sub-subsequence convergent to ν. By a standard
diagonal argument, this forces νn → ν in the weak topology (almost surely). This completes the
proof that the ESD of our Wigner matrix (rescaled by

√
n) converges to the semicircle distribution

weakly almost surely, modulo Proposition 3.5. (See also Problem B.6 for the weakly in probability
convergence.)

4 Proof of Proposition 3.5: bounding the variance

There is one more “combinatorial” step in the proof of the semicircle law: we need to show that
the variance of the moments of the ESD is bounded by mk/n

2.
Recall that

Yn,k =

∫
R
xk νn(dx) =

1

n1+ k
2

n∑
i1,...,ik=1

XI , where XI = Xi1i2Xi2i3 · · ·Xiki1 .

Here we use the notation I for the multi-index (i1, . . . , ik), and throughout the computation
below, we use the notation I ∈ [n]k, where [n] = {1, . . . , n}. We have

Var
(
Yn,k

)
=

1

n2+k
Var
( ∑
I∈[n]k

XI

)
=

1

n2+k

∑
I,J∈[n]k

Cov
(
XI , XJ

)
.

We claim that the sum of all covariances is bounded by a constant times nk, which then implies
Var
(
Yn,k

)
≤ const · nk/n2+k = O

(
1
n2

)
.

Step 1. Identifying when Cov
(
XI , XJ

)
can be nonzero. For each k-tuple I = (i1, i2, . . . , ik) ∈

[n]k, the product
XI = Xi1i2 Xi2i3 . . . Xiki1

is the product of the entries of our Wigner matrix corresponding to the directed “edges” (i1 →
i2), (i2 → i3), . . . , (ik → i1). Similarly, XJ is determined by the edges of another closed directed
walk J .
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1. If I and J use disjoint collections of matrix entries, then XI and XJ are independent, and
hence Cov(XI , XJ) = 0.

2. If there is an edge (say, Xi1i2) which appears only once in exactly one of I or J but not
both, then that edge factor is independent and forces Cov(XI , XJ) = 0 since E[Xi1i2 ] = 0.
Indeed, for example if Xi1i2 appears only in XI , then

E [XI ] = E [Xi1i2 ] · E [other factors] = 0, E
[
XIXJ

]
= E[Xi1i2 ] · E

[
other factors

]
= 0.

Thus, the only way we could get a nonzero covariance is if every edge that appears in I ∪ J
appears at least twice overall. Graphically, let us represent each k-tuple I by a directed closed
walk in the complete graph on [n]. The union I ∪J must be a connected subgraph in which every
directed edge has total multiplicity ≥ 2.

Step 2. Counting the contributions to the sum. Denote by q = |V (I ∪ J)| the number
of distinct vertices involved in the union I ∪ J . In principle, there are O(nq) ways to choose q
vertices from [n]. Then we need to specify how the edges form two closed walks of length k.

We split into two cases:

1. q ≤ k. Then the n-power in the sum over I, J is at most nk, which yields the overall
contribution O(n−2), as desired.

2. q ≥ k + 1. Ignoring directions and multiplicities, we see that the subgraph corresponding
to I∪J contains at most k edges. Since q ≥ k+1, we must have q = k+1 (by connectedness).
Thus, I∪J is a double tree. Since I and J are subsets of this double tree and q = k+1, they
also must be double trees. Thus, there exists an edge which appears in both I and J , and
at least twice in I and twice in J , so four times in I ∪ J . This contradicts the assumption
that I ∪ J is a double tree.

This implies that there are no leading contributions to the sum when q ≥ k + 1.

Combining these two cases, we conclude that the total number of pairs (I, J) with nonzero
covariance is of order at most nk, This yields the desired bound on the variance, and completes
the proof of Proposition 3.5.

With that, we are done with the Wigner semicircle law proof for real Wigner matrices (with
weakly almost sure convergence; see Lecture 1 for the definitions).

Also, see Problem B.7 for the complex case of the Wigner semicircle law.

5 Remark: Variants of the semicircle law

Let us briefly outline a few examples of the semicircle law for real/complex Wigner matrices
which relax the iid conditions and the conditions that all moments of the entries must be finite.
This list is not comprehensive, it is presented as an illustration of the universality / robustness
of the semicircle law.

Theorem 5.1 (Gaussian β-Ensembles [Joh98], [For10]). Let β > 0, and consider an n×n random
matrix ensemble with joint eigenvalue density:

pn(λ1, . . . , λn) =
1

Zn,β
exp

(
−β

4

n∑
i=1

λ2
i

) ∏
1≤i<j≤n

|λi − λj |β (5.1)

9
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where Zn,β is the normalization constant.2 Then the ESD of the normalized eigenvalues λi/
√
n

converges weakly almost surely to the semicircle law.

Theorem 5.2 (Correlated entries [SSB05]). Let Wn =
(

1√
n
Xpq

)
1≤p,q≤n

be a sequence of n × n

Hermitian random matrices where:

1. The entries Xpq are complex random variables that are:

• Centered: E[Xpq] = 0,

• Unit variance: E[|Xpq|2] = 1,

• Moment bound: sup
n

max
p,q=1,...,n

E
[
|Xpq|k

]
< ∞ for all k ∈ N.

2. There exists an equivalence relation ∼n on pairs of indices (p, q) in {1, . . . , n}2 such that:

• Entries Xp1q1 , . . . , Xpjqj are independent when (p1, q1), . . . , (pj , qj) belong to distinct
equivalence classes.

• The relation satisfies the following bounds:

(a) maxp#
{
(q, p′, q′) ∈ {1, . . . , n}3 | (p, q) ∼n (p′, q′)

}
= o(n2),

(b) maxp,q,p′ #
{
q′ ∈ {1, . . . , n} | (p, q) ∼n (p′, q′)

}
≤ B for some constant B,

(c) #
{
(p, q, p′) ∈ {1, . . . , n}3 | (p, q) ∼n (q, p′) and p ̸= p′

}
= o(n2).

3. The matrices are Hermitian: Xpq = Xqp. In particular, (p, q) ∼n (q, p), and this is consis-
tent with the conditions on the equivalence relation.

Then, as n → ∞, the ESD of Wn converges to the semicircle law.

There are variants of this theorem without the assumption that all moments of the entries
are finite.

Theorem 5.3 ([BGK16]). Let Mn = [Xij ]
n
i,j=1 be a symmetric n×n matrix with random entries

such that:

• The off-diagonal elements Xij, for i < j, are i.i.d. random variables with E[Xij ] = 0 and
E[X2

ij ] = 1.

• The diagonal elements Xii are i.i.d. random variables with E[Xii] = 0 and a finite second
moment, E[X2

ii] < ∞, for 1 ≤ i ≤ n.

Then the ESD of Mn, normalized by
√
n, converges to the semicircle law.

Theorem 5.4. For each n ∈ Z+, let Mn = [Xij ]
n
i,j=1 be a symmetric n × n matrix with real

random entries satisfying the following conditions:

• The entries Xij are independent (but not necessarily identically distributed) random vari-
ables with E[Xij ] = 0 and E[X2

ij ] = 1.

2For β = 1, 2, 4, this is the joint eigenvalue density of the Gaussian Orthogonal, Unitary, and Symplectic
Ensembles, respectively. For general β, there is no invariant random matrix distribution (while the eigenvalue
density (5.1) makes sense), and we can still treat all the β cases in a unified manner.
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• There exists a constant C such that supi,j,n E
[
|Xij |4

]
< C.

Then the ESD of Mn, normalized by
√
n, converges to the semicircle law almost surely. The

second condition can also be replaced by a uniform integrability condition on the variances.

Theorem 5.5 (For example, see [SB95]). Let Mn = [Xij ]
n
i,j=1 be a symmetric n× n matrix with

random entries. Assume that the expected matrix E[Mn] has rank r(n), where

lim
n→∞

r(n)

n
= 0.

Additionally, suppose E[Xij ] = 0, Var(Xij) = 1, and

sup
i,j,n

E
[
|Xij − E[Xij ]|4

]
< ∞.

Then the ESD of Mn, normalized by
√
n, converges to the semicircle law almost surely.

B Problems (due 2025-02-15)

B.1 Standard formula

Prove formula (2.1): ∫ π/2

0
sin2n θ dθ =

π

2

(2n)!

22n(n!)2
.

B.2 Tree profiles

Show that the expected height of a uniformly random Dyck path of semilength m is of order
√
m.

B.3 Ballot problem

Suppose candidate A receives p votes and candidate B receives q votes, where p > q ≥ 0. In how
many ways can these votes be counted such that A is always strictly ahead of B in partial tallies?

B.4 Reflection principle

Show the equality

Cm =

(
2m

m

)
−
(

2m

m− 1

)
,

where Cm counts the number of lattice paths from (0, 0) to (2m, 0) with steps (1, 1) and (1,−1)
that never go below the x-axis, and binomial coefficients count arbitrary lattice paths from (0, 0)
to (2m, 0) or to (2m, 2) with steps (1, 1) and (1,−1). In other words, show that the difference
between the number of paths to (2m, 0) and to (2m, 2) is Cm, the number of paths that never go
below the x-axis.

B.5 Bounding probability in the proof

Show inequality (3.2).
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B.6 Almost sure convergence and convergence in probability

Show that in Wigner’s semicircle law, the weakly almost sure convergence of random measures
νn to µsc implies weak convergence in probability.

B.7 Wigner’s semicircle law for complex Wigner matrices

Complex Wigner matrices are Hermitian symmetric, with iid complex off-diagonal entries, and
real iid diagonal entries (all mean zero). Each complex random variable has independent real and
imaginary parts.

1. Compute the expected trace of powers of a complex Wigner matrix.

2. Outline the remaining steps in the proof of Wigner’s semicircle law for complex Wigner
matrices.

B.8 Semicircle law without the moment condition

Prove Theorem 5.3.
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1 Recap

We have established the semicircle law for real Wigner random matrices. If W is an n × n real
symmetric matrix with independent entries Xij above the main diagonal (mean zero, variance 1),
and mean zero diagonal entries, then the empirical spectral distribution of W/

√
n converges to

the semicircle law as n → ∞:

lim
n→∞

1

n

n∑
i=1

δλi/
√
n = µsc, (1.1)

where

µsc(dx) =

{
1
2π

√
4− x2 dx, if |x| ≤ 2,

0, otherwise.

The convergence in (1.1) is weakly almost sure. The way we got the result is by expanding
ETr(W k) and counting trees, plus analytic lemmas which ensure that the convergence of expected
powers of traces is enough to conclude the convergence (1.1) of the empirical spectral measures.

Today, we are going to focus on Gaussian ensembles. The plan is:

• Definition and spectral density for real symmetric Gaussian matrices (GOE).

• Other random matrix ensembles with explicit eigenvalue densities: Wishart (Laguerre) and
Jacobi (MANOVA/CCA) ensembles.

• Tridiagonalization and general beta ensemble.

• (next week, not today) Wigner’s semicircle law via tridiagonalization.

2 Gaussian ensembles

2.1 Definitions

Recall that a real Wigner matrix W can be modeled as

W =
Y + Y ⊤

√
2

,
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where Y is an n × n matrix with independent entries Yij , 1 ≤ i, j ≤ n, such that Yij are mean
zero, variance 1. Then for 1 ≤ i < j ≤ n, we have for the matrix W = (Xij):

Var (Xii) = Var(
√
2Yii) = 2, Var (Xij) = Var

(
Yij + Yji√

2

)
= 1.

If, in addition, we assume that Yij are standard Gaussian N (0, 1), then the distribution of W
is called the Gaussian Orthogonal Ensemble (GOE).

For the complex case, we have the standard complex Gaussian random variable

Z =
1√
2

(
ZR + iZI

)
, E(Z) = 0, VarC(Z) := E(|Z|2) = E(|ZR|2) + E(|ZI |2)

2
= 1,

where ZR and ZI are independent standard Gaussian real random variables N (0, 1).
If we take Y to be an n × n matrix with independent entries Yij , 1 ≤ i, j ≤ n distributed as

Z, then the random matrix1

W =
Y + Y †
√
2

is said to have the Gaussian Unitary Ensemble (GUE) distribution. For the GUE matrix W =
(Xij), we have for 1 ≤ i < j ≤ n:

VarC(Xii) = 1, VarC(Xij) =
1

4

[
E(ZR

ij + ZR
ji)

2 + E(ZI
ij + ZI

ji)
2
]
= 1.

Both GOE and GUE have real eigenvalues λ1 ≥ . . . ≥ λn. We are going to describe the joint
distribution of these eigenvalues. Despite the fact that the map from a matrix to its eigenvalues
is quite complicated and nonlinear (you need to solve an equation of degree n), the distribution
of eigenvalues in the Gaussian cases is fully explicit.

See Problem C.1 for invariance of GOE/GUE under orthogonal/unitary conjugation (this is
where the names “orthogonal” and “unitary” come from).

Remark 2.1. There is a third player in the game, theGaussian Symplectic Ensemble (GSE),which
we will mainly ignore in this course due to its less intuitive quaternionic nature.

2.2 Joint eigenvalue distribution for GOE

In this section, we give a derivation of the joint probability density for the GOE.

Theorem 2.2 (GOE Joint Eigenvalue Density). Let W be an n× n real symmetric matrix with
the GOE distribution (Section 2.1). Then its ordered real eigenvalues λ1 ≤ · · · ≤ λn of W/

√
2

have a joint probability density function on Rn given by:

p(λ1, . . . , λn) =
1

Zn

∏
1≤i<j≤n

∣∣λi − λj

∣∣ exp(−1

2

n∑
k=1

λ2
k

)
,

where Zn is a constant (depending on n but not on λi) ensuring the density integrates to 1:

Zn = ZGOE
n =

(2π)n/2

n!

n−1∏
j=0

Γ(1 + (j + 1)β/2)

Γ(1 + β/2)
, β = 1.

1Y † denotes the transpose of Y combined with complex conjugation.
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Remark 2.3. We renormalized the GOE by a factor of
√
2 to make the Gaussian part of the

density, exp(−1
2

∑n
k=1 λ

2
k), standard. In the GUE case, no normalization is required.

We break the proof into four major steps, considered in Sections 2.3 to 2.6 below.

2.3 Step A. Joint density of matrix entries

Let us label all independent entries of W/
√
2:

{X12, X13, . . . , X23, . . .︸ ︷︷ ︸
above diag

, X22, X33, . . .︸ ︷︷ ︸
diag

}.

There are n(n−1)
2 off-diagonal entries with variance 1/2, and n diagonal entries with variance 1.

The joint density of these entries (ignoring normalization for a moment) is proportional to

f(x12, x13, . . . , x22, x33, . . .) ∝ exp
(
−
∑
i<j

x2ij −
1

2

n∑
i=1

x2ii

)
= exp

(
−1

2

n∑
i,j=1

x2ij

)
, (2.1)

where in the right-hand side, we have xij = xji for i ̸= j. We then recognize

n∑
i,j=1

x2ij = Tr(W 2) =
n∑

k=1

λ2
k.

Including the normalization for Gaussians, one arrives at the density on Rn(n+1)/2:

f(W ) dW = π−n(n−1)
4

(
2π
)−n

4 exp
(
−1

2 Tr(W
2)
)
dW,

where dW is the product measure over the n(n+1)
2 independent entries.

2.4 Step B. Spectral decomposition

Since W is real symmetric, it can be orthogonally diagonalized:

W = QΛQ⊤, Q ∈ O(n),

where Λ = diag(λ1, . . . , λn) has the eigenvalues. Then, as we saw before, we have

Tr(W 2) = Tr
(
QΛQ⊤QΛQ⊤) = Tr(Λ2) =

n∑
k=1

λ2
k.

The map from W to (Λ, Q) is not one-to one, but in case W has distinct eigenvalues, the preimage
of (Λ, Q) contains 2n elements. See Problems C.2 and C.3.

It remains to make the change of variables from W to Λ, which involves the Jacobian.
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2.5 Step C. Jacobian

We now examine how the measure dW in the space of real symmetric matrices factors into a
piece depending on {λi} and a piece depending on Q. Formally,

dW =
∣∣∣det( ∂W

∂(Λ,Q)

)∣∣∣ dΛ dQ,

where dQ is the Haar measure2 on O(n), and dΛ is the Lebesgue measure on Rn. The Lebesgue
measure later needs to be restricted to the “Weyl chamber” λ1 ≤ · · · ≤ λn if we want an ordering,
this introduces the simple factor n! in the final density.

Lemma 2.4 (Jacobian for Spectral Decomposition). For real symmetric W = QΛQ⊤, one has∣∣det( ∂W
∂(Λ,Q)

)∣∣ = const
∏

1≤i<j≤n

∣∣λi − λj

∣∣,
where the constant is independent of the λi’s and depends only on n.

Remark 2.5. Equivalently, one often writes

dW =
∣∣∆(λ1, . . . , λn)

∣∣ dΛ dQ, where ∆(λ1, . . . , λn) =
∏
i<j

(λj − λi)

is the Vandermonde determinant.

We prove Lemma 2.4 in the rest of this subsection.

Consider small perturbations of Λ and Q. Write

W = QΛQ⊤, Λ = diag(λ1, . . . , λn).

Let δW be an infinitesimal change in W . We want to see how δW depends on δΛ and δQ.

Parametrizing δQ. Since Q ∈ O(n), any small variation of Q can be expressed as

Q exp(B) ≈ Q(I +B),

where B is an infinitesimal skew-symmetric matrix (B⊤ = −B). Indeed, exp(B) must be orthog-
onal, so exp(B)⊤ exp(B) = I. Thus, we have

(I +B)⊤(I +B) = I, or B⊤ +B = 0.

Note that exp(B) is the matrix exponential of B, which is defined by the usual power series.

Note also that the dimension of O(n) is dim(O(n)) = n(n−1)
2 , which matches the dimension of

the space of skew-symmetric matrices.

2Recall that the Haar measure on O(n) is the unique (up to a constant factor) measure that is invariant under
group shifts (in this situation, both left and right shifts work). In probabilistic terms, if a random orthogonal
matrix Q is Haar-distributed, then QR and RQ are also Haar-distributed for any fixed orthogonal matrix R.
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Computing δW . Under an infinitesimal change, say,

Q 7→ Q (I +B), Λ 7→ Λ + δΛ,

we have
W = QΛQ⊤ =⇒ Q⊤δWQ = δΛ +BΛ− ΛB,

to first order in small quantities. Here we used the orthogonality of Q and the skew-symmetry
of B.

Local structure of the map. We see that the mapW 7→ (Λ, Q) in a neighborhood of (Λ, Q) de-
termined by δΛ and B locally translates by Q⊤ δΛQ, which implies the Lebesgue factor dλ1 . . . dλn

in δW . Indeed, the Lebesgue measure on Rn is invariant under orthogonal transformations.
The next terms, the commutator [B,Λ], has the form (recall that B is infinitesimally small

and Λ is diagonal):

BΛ− ΛB =

 0 b12 · · ·
−b12 0 · · ·
...

...
. . .


λ1 0 · · ·

0 λ2 · · ·
...

...
. . .

−

λ1 0 · · ·
0 λ2 · · ·
...

...
. . .


 0 b12 · · ·
−b12 0 · · ·
...

...
. . .


=

 0 b12λ2 · · ·
−b12λ1 0 · · ·

...
...

. . .

−

 0 b12λ1 · · ·
b12λ2 0 · · ·
...

...
. . .


=

 0 b12(λ2 − λ1) · · ·
b12(λ1 − λ2) 0 · · ·

...
...

. . .

 .

Thus, this action locally means that the infinitesimal bij is multiplied by λi − λj , for all 1 ≤ i <
j ≤ n. This is a scalar factor that does not depend on the orthogonal component Q, but only on
the eigenvalues. Therefore, this factor is the same in Q⊤ δW Q.

This completes the proof of Lemma 2.4. See also Problem C.5 for the GUE Jacobian.

2.6 Step D. Final Form of the density

Putting Steps A–C together, we find:

dW = const ·
∏
i<j

|λi − λj |dΛ
(
Haar measure on O(n)︸ ︷︷ ︸

does not depend on λi

)
.

Hence, the joint density of {λ1, . . . , λn} is, up to normalization depending only on n, equal to∏
i<j

|λi − λj | exp
(
−1

2

n∑
k=1

λ2
k

)
. (2.2)

We leave the computation of the normalization constant in Theorem 2.2 as Problem C.6.

Remark 2.6. We emphasize that in the GOE case, the normalization W/
√
2 for (2.2) is so that

the variance is 1 on the diagonal and 1
2 off the diagonal.
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3 Other classical ensembles with explicit eigenvalue densities

Let us briefly discuss other classical ensembles with explicit eigenvalue densities, which are not
necessarily Gaussian, but are related to other classical structures like orthogonal polynomials.
These ensembles also have a built-in parameter β (and in the cases β = 1, 2, 4, they have invariance
under orthogonal/unitary/symplectic conjugation).

3.1 Wishart (Laguerre) ensemble

In this subsection, we describe another classical family of random matrices whose eigenvalues
form a fundamental example of a β-ensemble with a “logarithmic” pairwise interaction. These
are called the Wishart or Laguerre ensembles. Their importance arises in statistics (covariance
estimation, principal component analysis), signal processing, and many other areas.

3.1.1 Definition via SVD

Let X be an n × m random matrix with iid entries drawn from a real/complex/quaternionic
normal distribution. We assume n ≤ m. We can perform the singular value decomposition
(SVD) of X:

X = U

s1 0
. . .

0 sn

V †,

where U, V are orthogonal/unitary/symplectic matrices (depending on β), s1, . . . , sn ≥ 0 are the
singular values of X, and † means the corresponding conjugation. For example, in the real case,
s1, . . . , sn are the square roots of the eigenvalues of XX⊤.

Moreover, let W = XX†; this is called the Wishart random matrix ensemble. We have

λi = s2i , i = 1, . . . , n; λ1 ≥ · · · ≥ λn ≥ 0.

These eigenvalues admit a closed-form joint probability density function (pdf) in complete analogy
with the GOE/GUE calculations from previous subsections.

3.1.2 Joint density of eigenvalues

Theorem 3.1 (Wishart eigenvalue density). The ordered eigenvalues λ1, . . . , λn ≥ 0 of the n×n
Wishart matrix W have the joint density on {λi ≥ 0} proportional to∏

1≤i<j≤n

(λi − λj)
β

n∏
i=1

λ
β
2
(m−n+1)−1

i exp
(
−λi

2

)
,

where β = 1, 2, 4 corresponds to the real, complex, or quaternionic case, respectively.

Idea of proof (sketch). The proof is a variant of the derivation for the joint eigenvalue density in
the GOE/GUE case (see Section 2.2). One writes down the joint distribution of all entries of
X, changes variables to singular values and orthogonal/unitary transformations, and identifies
the Jacobian factor as

∏
i<j |s2i − s2j |β =

∏
i<j |λi − λj |β. The extra factors in front arise from

the powers of λi (i.e. from
∏

i si) and the Gaussian exponential exp
(
−1

2

∑
s2i
)
when reshaped to

exp
(
−1

2

∑
λi

)
.
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Remark 3.2. The exponent of λi in the product is often written as α = β
2 (m − n + 1) − 1.

One also sees the name multivariate Gamma distribution in statistics. For β = 1 the ensemble
is sometimes called the real Wishart (or Laguerre Orthogonal) ensemble; for β = 2 it is the
complex Wishart (or Laguerre Unitary) ensemble; and β = 4 (not discussed in detail here) is
the symplectic version. In point processes, the case β = 2 is also referred to as the Laguerre
orthogonal polynomial ensemble.

3.2 Jacobi (MANOVA/CCA) ensemble

The Jacobi (sometimes called MANOVA or CCA) ensemble arises when one looks at the in-
teraction between two independent rectangular Gaussian matrices that share the same number
of columns. Statistically, this corresponds to questions of canonical correlations or multivariate
Beta distributions. In random matrix theory, it appears as yet another fundamental example of
a β-ensemble with an explicit eigenvalue density.

3.2.1 Setup

Let X be an n× t real (or complex) matrix and Y be a k× t matrix, with n ≤ k ≤ t. Assume X
and Y have iid Gaussian entries (real or complex) of mean 0 and variance 1 and are independent
of each other.

Definition 3.3 (Projectors and canonical correlations). Denote by

PX = X⊤(XX⊤)−1X
(
or X†(XX†)−1X

)
,

the orthogonal (unitary) projector onto the row span of X. Similarly, define

PY = Y ⊤(Y Y ⊤)−1Y.

These are t × t projection matrices of ranks n and k, respectively, embedded in a space of
dimension t. One checks that PX and PY commute if and only if the row spaces of X and Y are
aligned in a certain way. The canonical correlations between these two subspaces are the singular
values of PXPY . Equivalently, the squared canonical correlations are the nonzero eigenvalues of
PXPY .

Since rank(PXPY ) ≤ min(n, k), there are at most min(n, k) nonzero eigenvalues of PXPY .
In fact, generically (when the subspaces are in “general position”), there are exactly min(n, k)
nonzero eigenvalues.

Example 3.4. For n = k = 1, we have

PXPY =
⟨X,Y ⟩

⟨X,X⟩⟨Y,X⟩
X⊤Y,

which is a rank one matrix with the only nonzero singular eigenvalue ⟨X,Y ⟩. Therefore, the
singular value is exactly the sample correlation coefficient between X and Y .
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3.2.2 Jacobi ensemble

Theorem 3.5 (Jacobi/MANOVA/CCA Distribution). Let X and Y be as above, each having iid
(real or complex) Gaussian entries of size n× t and k × t, respectively, with n ≤ k ≤ t. Assume
further that X and Y are independent of each other (this is the null hypothesis in statistics).

Then the nonzero eigenvalues λ1, . . . , λn of the matrix PXPY lie in the interval [0, 1] and have
the joint density function of the form

∏
i<j

|λi − λj |β
n∏

i=1

λ
β
2
(k−n+1)−1

i

(
1− λi

) β
2
(t−n−k+1)−1

,

up to a normalization constant that depends on n, k, t (but not on {λi}). Here again β = 1 for
the real case and β = 2 for the complex case.

This distribution is called the Jacobi (or MANOVA, or CCA) ensemble, and it is also some-
times called the multivariate Beta distribution. In point processes, the β = 2 case is often referred
to as the Jacobi orthogonal polynomial ensemble.

Remark 3.6. The derivation is again parallel to that in the GOE/GUE context, but one now
keeps track of the row spaces and the relevant rectangular dimensions. The matrix (XX⊤) (or
(XX†)) is invertible with high probability whenever n ≤ t and X is in general position. The
distribution above reflects the geometry of overlapping projectors in a higher-dimensional space
Rt (or Ct).

3.3 General Pattern and β-Ensembles

We have now seen three classical examples:

• Wigner (Gaussian) ensembles (real/complex/quaternionic),

• Wishart/Laguerre ensembles W = XX⊤,

• Jacobi/MANOVA/CCA ensembles.

Their eigenvalue densities (ordered or unordered) always display the same building blocks:

∏
1≤i<j≤n

|λi − λj |β ×
n∏

i=1

V (λi),

where β indicates the real (β = 1), complex (β = 2), or symplectic (β = 4) symmetry class, and
V (λ) is a single-variable potential function. Such distributions are often referred to as β-ensembles
or log-gases, reflecting that the factor

∏
i<j |λi−λj |β can be interpreted as the Boltzmann weight

for charges with a logarithmic pairwise repulsion.

Remark 3.7. Beyond these three classical families, there are many other matrix models and
discrete distributions whose eigenvalues produce similar log-gas structures but with different
potentials V (λ). These share many of the same techniques and phenomena (e.g. local eigenvalue
statistics, largest-eigenvalue asymptotics, etc.) that appear throughout modern random matrix
theory.
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Remark 3.8. For β = 2, the connection to orthogonal polynomials suggests discrete models of
log-gases, which are powered by most known orthogonal polynomials in one variable from the
(q-)Askey scheme [KS96]. For example, the model of (uniformly random) lozenge tilings of the
hexagon is connected to Hahn orthogonal polynomials [Gor21] whose orthogonality weight is the
classical hypergeometric distribution from probability theory.

4 Tridiagonal form for real symmetric matrices

Any real symmetric matrix can be orthogonally transformed into a tridiagonal matrix. This fact
is standard in numerical linear algebra (the “Householder reduction”) and also central in random
matrix theory—notably in the Dumitriu–Edelman approach [DE02] for Gaussian ensembles.

Theorem 4.1. Any real symmetric matrix W ∈ Rn×n can be represented as

W = Q⊤ T Q, Q ∈ O(n),

where T is real symmetric tridiagonal. Concretely, T has nonzero entries only on the main
diagonal and the first super-/sub-diagonals:

T =


d1 α1 0 · · · 0
α1 d2 α2 · · · 0

0 α2 d3
. . .

...
...

...
. . .

. . . αn−1

0 0 · · · αn−1 dn

 .

Definition 4.2 (Householder reflection). A Householder reflection in Rn is a matrix H of the
form

H = I − 2
v v⊤

∥v∥2
, v ∈ Rn nonzero column vector.

One checks that H⊤ = H, H2 = I, and H is orthogonal (i.e. H⊤H = I). Geometrically, H is the
reflection across the hyperplane orthogonal to v.

Proof of Theorem 4.1. Let A ∈ Rn×n be a symmetric matrix. We will show how to orthogonally
conjugate A into a tridiagonal matrix T .

Step 1: Zeroing out subdiagonal entries in the first column. Write A in block form as

A =

(
a11 r⊤

r B

)
,

where r ∈ Rn−1 is the rest of the first column below a11, and B is (n − 1) × (n − 1). We seek
an orthogonal matrix H1 acting on Rn−1 (and in the full space Rn it preserves the first basis
vector e1 and its orthogonal complement) that “annihilates” the part of this first column below
the subdiagonal. Specifically, H1 is a Householder reflection chosen so that H1 when acting in the
(n− 1)-dimensional subspace spanned by r zeroes out all but the first entry of r. In the ambient
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space Rn, H1 has a block form, so that it does not touch the 11-entry of the matrix A. Since A is
symmetric, conjugating A by H1 also zeroes out the corresponding superdiagonal entries in the
first row. Concretely,

H1AH
⊤
1 =


d1 α1 0 · · · 0
α1 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 ∗ ∗ · · · ∗

 .

This is always possible because Householder reflections can exchange any two given unit vectors.
Note also that α1 = ∥r∥.

Step 2: Inductive reduction on the trailing principal submatrix. Next, we restrict
attention to rows 2 through n and columns 2 through n. Let H2 be a second Householder
reflection that acts as the identity on the first row and column, and zeroes out the subdiagonal
entries of the second column (viewed within that trailing (n − 1) × (n − 1) block). Conjugate
again:

H2

(
H1AH

⊤
1

)
H⊤

2 =
(
H2H1

)
A
(
H⊤

1 H⊤
2

)
.

Now the first two columns (and rows) are in the desired form.

Step 3: Repeat for columns (and rows) 3, 4, . . . . By repeating this procedure for each
successive column (and row, by symmetry), we eventually force all off-diagonal entries outside
the main and first super-/subdiagonals to be zero. After n− 2 steps, the resulting matrix

T = Q⊤AQ, Q = H1H2 · · · Hn−2,

is tridiagonal, and Q is orthogonal because it is a product of orthogonal (Householder) transfor-
mations.

Since each Hk is orthogonal, none of these transformations change the eigenvalues of A. Thus
T has the same spectrum as A. This completes the tridiagonalization argument.

Remark 4.3. This Householder procedure is also used in practical numerical methods for eigen-
value computations: once a real symmetric matrix is reduced to tridiagonal form, specialized
algorithms (such as the QR algorithm) can then be applied more efficiently. Overall, computa-
tions with tridiagonal matrices are much simpler and with better numerical stability than with
general dense matrices.

5 Tridiagonalization of random matrices

Here we discuss the tridiagonal form of the GOE random matrices, and extend it to the general
beta case.
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5.1 Dumitriu–Edelman tridiagonal model for GOE

Theorem 5.1. Let W be an n× n GOE matrix (real symmetric) with variances chosen so that
each off-diagonal entry has variance 1/2 and each diagonal entry has variance 1. Then there
exists an orthogonal matrix Q such that

W = Q⊤ T Q,

where T is a real symmetric tridiagonal matrix of the special form

T =


d1 α1 0 · · ·

α1 d2 α2
. . .

0 α2 d3
. . .

...
. . .

. . .
. . .

 ,

and the random variables {di, αj}1≤i≤n, 1≤j≤n−1 are mutually independent, with

di ∼ N (0, 1), αj =

√
χ2

n−j

2
,

where χ2
ν is a chi-square distribution with ν degrees of freedom.

Remark 5.2 (Chi-square distributions). The chi-square distribution with ν degrees of freedom,
denoted by χ2

ν , is a fundamental distribution in statistics and probability theory. It arises nat-
urally as the distribution of the sum of the squares of ν independent standard normal random
variables. Formally, if Z1, Z2, . . . , Zν are independent random variables with Zi ∼ N (0, 1), then
the random variable

Q =
ν∑

i=1

Z2
i

follows a chi-square distribution with ν degrees of freedom, i.e., Q ∼ χ2
ν . In the context of the

Dumitriu–Edelman tridiagonal model (Theorem 5.1), the subdiagonal entries αj are defined as

αj =

√
χ2
n−j

2 . One can call this a chi random variable, as this is a square root of a chi-square
variable.

The parameter ν does not need to be an integer, and the chi-square distribution is well defined
for any positive real ν, by continuation of the density formula.

Idea of proof of Theorem 5.1. This construction is essentially a specialized version of the House-
holder reduction in Section 4, set up so that each step matches precisely the distributions

αj ∼
√

χ2
n−j

2 and di ∼ N (0, 1). One uses the rotational invariance of Gaussian matrices to
ensure at each step that the “residual vector” is isotropic (i.e., its distribution is invariant under
orthogonal transformations). The norm of that vector yields the χ2-type variables.

Thus, to study the eigenvalues of a GOE matrix W , one can equivalently study the (much
sparser) random tridiagonal matrix T .
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5.2 Generalization to β-ensembles

The tridiagonal GOE construction (Theorem 5.1) extends to a whole family of ensembles, parametrized
by β > 0. In particular, for β = 1, 2, 4 we get the classical Orthogonal, Unitary, and Symplectic
(GOE/GUE/GSE) ensembles, respectively. The general β case is known as the β-ensemble; out-
side of the classical cases β = 1, 2, 4, there is no matrix ensemble interpretation with iid entries,
but the tridiagonal form model still works.

We saw that the β-ensembles arise naturally as log-gases in physics, with density proportional
to

exp
(
−

n∑
i=1

V (λi)
) ∏

1≤i<j≤n

∣∣λi − λj

∣∣β
for some potential V . The simplest choice, V (λ) = 1

2 λ
2, corresponds to Gaussian β-ensembles,

which in the classical cases reproduce GOE/GUE/GSE.

Remark 5.3 (Tridiagonal Construction for General β). A breakthrough [DE02] showed that
the Gaussian β-ensembles (for any β > 0) can be represented as eigenvalues of real symmetric
tridiagonal matrices whose entries are independent (but not identically distributed), and have
Gaussian and chi distributions:

• The diagonal entries are iid standard normal random variables N (0, 1).

• The subdiagonal entries are αj =

√
χ2
(n−j)β

2 , where χ2
ν is a chi-square distribution with ν

degrees of freedom. Here we use the fact that the parameter ν in the chi-square distribution
does not need to be an integer.

• The superdiagonal entries are determined by symmetry.

In the next lecture, we will see how the tridiagonal form allows to prove the Wigner’s semicircle
law for the Gaussian β-ensembles.

C Problems (due 2025-02-22)

C.1 Invariance of GOE and GUE

Show that the distribution of the GOE and GUE is invariant under, respectively, orthogonal and
unitary conjugation. For GOE, this means that if W is a random GOE matrix and Q is a fixed
orthogonal matrix of order n, then the distribution of QWQ⊤ is the same as the distribution of
W . (Similarly for GUE.)

Hint: write the joint density of all entries of GOE/GUE (for instance, GOE is determined by
n(n+ 1)/2 real random independent variables) in a coordinate-free way.

C.2 Preimage size for spectral decomposition

Show that for a real symmetric matrix W with distinct eigenvalues, if W = QΛQ⊤ is its spectral
decomposition where Q is orthogonal and Λ = diag(λ1, . . . , λn) is diagonal with (λ1 ≥ · · · ≥ λn),
then there are exactly 2n different choices of Q that give the same matrix W .
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C.3 Distinct eigenvalues

Show that under GOE and GUE, almost surely, all eigenvalues are distinct.

C.4 Testing distinctness of eigenvalues via rank-1 perturbations

Suppose λ is an eigenvalue of a fixed matrix W with multiplicity ℓ. Consider the rank-1 pertur-
bation

Wε = W + αuu⊤, α ∼ N (0, ε),

where u ∈ Rn is fixed. Prove that with probability one (in α), the eigenvalue λ splits into ℓ
distinct eigenvalues of Wε.

Hint: Write the characteristic polynomial of Wε as det(Wε − µI). Show that the infinitesimal
change in α moves the roots in a non-degenerate way, splitting a repeated root.

C.5 Jacobian for GUE

Arguing similarly to Section 2.5, show that the Jacobian for the spectral decomposition of a
complex Hermitian matrix is proportional to∏

1≤i<j≤n

|λi − λj |2.

In particular, make sure you understand where the factor 2 comes from in the complex case.

C.6 Normalization for GOE

Compute the n-dimensional integral (in the ordered on unordered form):

∫
λ1<...<λn

∏
i<j

(λi − λj) exp
(
−1

2

n∑
k=1

λ2
k

)
dλ1 · · · dλn.

=
1

n!

∫
Rn

∏
i<j

|λi − λj | exp
(
−1

2

n∑
k=1

λ2
k

)
dλ1 · · · dλn.

Hint: The following identity might be useful:∫ ∞

−∞
x2me−x2/2 dx = 2m+1/2Γ

(
m+

1

2

)
.

C.7 Wishart eigenvalue density

Prove Theorem 3.1 (in the real case β = 1) by using the singular value decomposition of X and
the properties of the Wishart ensemble.
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C.8 Householder reflection properties

Show that the Householder reflection H = I − 2 v v⊤/∥v∥2 has the following properties:

1. H is orthogonal, i.e., H⊤H = I.

2. H is symmetric, i.e., H⊤ = H.

3. H is idempotent, i.e., H2 = I.

4. H is a reflection across the hyperplane orthogonal to v.

C.9 Distribution of the Householder vector in random tridiagonalization

Consider the first step of the Householder tridiagonalization of a GOE matrix W . Denote the
first column by x ∈ Rn, and let

v = x + α e1, α = ±∥x∥.

Then the first Householder reflection is given by

H1 = I − 2
v v⊤

⟨v, v⟩
.

Prove that:

1. ∥v∥2 follows a χ2
ν distribution with ν degrees of freedom (determine ν in terms of n).

2. The direction v/∥v∥ is uniformly distributed on the unit sphere Sn−1 and is independent of
∥v∥.

Hint: View x as a Gaussian vector in Rn, using the fact that the first column of a GOE matrix
(including its diagonal entry) is an isotropic normal vector (up to small adjustments for the
diagonal). Orthogonal invariance of the underlying distribution ensures the direction is uniform
on Sn−1.

C.10 Householder reflection for GUE

Modify the tridiagonalization procedure which was discussed for the GOE case, and show that
the GUE random matrix can be transformed (by a unitary conjugation) into

N (0, 1) χ2(n−1)/
√
2 0 0 · · ·

χ2(n−1)/
√
2 N (0, 1) χ2(n−2)/

√
2 0 · · ·

0 χ2(n−2)/
√
2 N (0, 1) χ2(n−3)/

√
2 · · ·

0 0 χ2(n−3)/
√
2 N (0, 1) · · ·

...
...

...
...

. . .


(this matrix is symmetric, and in the entries, we list the distributions).
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C.11 Jacobi ensemble is related to two Wisharts

Let X be an n×m and Y be a k×m real Gaussian matrices with iid N (0, 1) entries, independent
of each other, and assume n ≤ k ≤ m. Consider the matrix(

XX⊤ + Y Y ⊤)−1 (
XX⊤) ∈ Rn×n.

1. Prove that it is well-defined (invertible denominator) with probability 1, and that it is
symmetric and diagonalizable in Rn.

2. Show that its eigenvalues lie in [0, 1] and follow a Jacobi (MANOVA) distribution of pa-
rameters β = 1 and

(
n, k,m

)
.

3. Identify explicitly how these parameters match the shape parameters in the standard mul-
tivariate Beta / Jacobi pdf

∏
i<j

|λi − λj |
n∏

i=1

λα
i (1− λi)

γ ,

with appropriate α, γ in terms of n, k,m.

Hint: Use that XX⊤ and Y Y ⊤ are (independent) Wishart matrices. Rewrite(
XX⊤ + Y Y ⊤)−1

XX⊤

via block-inversion or projector-based arguments to see it is related to the product of two or-
thogonal projectors in Rm. The Jacobi distribution then emerges from the overlapping subspace
geometry.
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1 Recap

Note: I did some live random matrix simulations here and here — check them out. More simu-
lations to come.

1.1 Gaussian ensembles

We introduced Gaussian ensembles, and for GOE (β = 1) we computed the joint eigenvalue
density. The normalization is so that the off-diagonal elements have variance 1

2 and the diagonal
elements have variance 1. Then the joint eigenvalue density is

p(λ1, . . . , λn) =
1

Zn

n∏
i=1

e−
1
2
λ2
i

∏
1≤i<j≤n

(λi − λj), λ1 ≥ λ2 ≥ . . . ≥ λn.

1.2 Tridiagonalization

We showed that any real symmetric matrix A can be tridiagonalized by an orthogonal transfor-
mation Q:

Q⊤AQ = T,

where T is real symmetric tridiagonal, having nonzero entries only on the main diagonal and the
first super-/subdiagonals:

T =


d1 α1 0 · · · 0
α1 d2 α2 · · · 0

0 α2 d3
. . .

...
...

...
. . .

. . . αn−1

0 0 · · · αn−1 dn

 .

In the proof, each time we need to act in the orthogonal complement to the subspace e1, . . . , ek−1

(starting from e1), and apply a Householder reflection to zero out everything strictly below the
subdiagonal. (We apply the transformations like A 7→ HAH⊤, so that the first row transforms
in the same way as the first column of A).
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2 Tridiagonal random matrices

2.1 Distribution of the tridiagonal form of the GOE

Applying the tridiagonalization to GOE, we obtain the following random matrix model.

Theorem 2.1. Let W be an n× n GOE matrix (real symmetric) with variances chosen so that
each off-diagonal entry has variance 1/2 and each diagonal entry has variance 1. Then there
exists an orthogonal matrix Q such that

W = Q⊤ T Q,

where T is a real symmetric tridiagonal matrix

T =


d1 α1 0 · · ·

α1 d2 α2
. . .

0 α2 d3
. . .

...
. . .

. . .
. . .

 , (2.1)

and the random variables {di, αj}1≤i≤n, 1≤j≤n−1 are mutually independent, with

di ∼ N (0, 1), αj =

√
χ2

n−j

2
,

where χ2
ν is a chi-square distribution with ν degrees of freedom.

Remark 2.2 (Chi-square distributions). The chi-square distribution with ν degrees of freedom,
denoted by χ2

ν , is a fundamental distribution in statistics and probability theory. It arises nat-
urally as the distribution of the sum of the squares of ν independent standard normal random
variables. Formally, if Z1, Z2, . . . , Zν are independent random variables with Zi ∼ N (0, 1), then
the random variable

Q =
ν∑

i=1

Z2
i

follows a chi-square distribution with ν degrees of freedom, i.e., Q ∼ χ2
ν . In the context of

Theorem 2.1, the αj ’s can be called chi random variables.
The parameter ν does not need to be an integer, and the chi-square distribution is well defined

for any positive real ν, for example, by continuation of the density formula. The probability
density is

f(x) =
1

2ν/2 Γ(ν/2)
xν/2−1 e−x/2, x ≥ 0.

Proof of Theorem 2.1. In the process of tridiagonalization, we apply Householder reflections.
Note that the diagonal entries stay fixed, and we only change the off-diagonal entries. Let us
consider these off-diagonal entries.
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In the first step, we apply the reflection in Rn−1 to turn the column vector (a2,1, a3,1, . . . , an,1)
into a vector parallel to (1, 0, . . . , 0) ∈ Rn−1. Since the Householder reflection is orthogonal, it
preserves lengths. So,

α1 =
√
a221 + a231 + · · ·+ a2n1, ai1 ∼ N (0,

1

2
).

This implies that α1 has the desired chi distribution. The distribution of the other entries is
obtained similarly by the recursive application of the Householder reflections.

Note that αj ’s and di’s depend on nonintersecting subsets of the matrix entries, so they are
independent. This completes the proof.

2.2 Dumitriu–Edelman GβE tridiagonal random matrices

Let us define a general β extension of the tridiagonal model for the GOE.

Definition 2.3. Let β > 0 be a parameter. The tridiagonal GβE is a random n× n tridiagonal
real symmetric matrix T as in (2.1), where di ∼ N (0, 1) are independent standard Gaussians,
and

αj ∼
1√
2
χβ(n−j), 1 ≤ j ≤ n− 1,

are chi-distributed random variables.

We showed that for β = 1, the GβE is the tridiagonal form of the GOE random matrix model.
The same holds for the two other classical betas:

Proposition 2.4 (Without proof). For β = 2, the GβE is the tridiagonal form of the GUE
random matrix model, which is the random complex Hermitian matrix with Gaussian entries and
maximal independence. Similarly, for β = 4, the GβE is the tridiagonal form of the GSE random
matrix model.

Moreover, for all β, the joint eigenvalue density of GβE is explicit:

Theorem 2.5 ([DE02]). Let T be a GβE matrix as in Definition 2.3. Then the joint eigenvalue
density is given by

p(λ1, . . . , λn) =
1

Zn,β
e−

1
2

∑n
i=1 λ

2
i

∏
1≤i<j≤n

|λi − λj |β, λ1 ≥ λ2 ≥ . . . ≥ λn.

This theorem is also given without proof. The proof involves linear algebra and computation
of the Jacobians of the change of variables from the matrix entries to the eigenvalues in the
tridiagonal setting. It can be found in the original paper [DE02].

2.3 The case β = 2

For many questions involving local eigenvalue statistics, the case β = 2 (the GUE, Gaussian
Unitary Ensemble) is the most tractable. This is because the joint density of the eigenvalues
admits a determinantal structure coming from a square Vandermonde factor

∏
i<j(λi −λj)

2 and

the Gaussian exponential exp
(
−1

2

∑
λ2j

)
. Moreover, for β = 2, the random matrix model and

its correlation functions can be expressed explicitly through determinants involving orthogonal
polynomials, namely, the Hermite polynomials.
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Proposition 2.6 (Joint density for GUE and orthogonal polynomials). Consider the GUE
(Gaussian Unitary Ensemble) random matrix model, i.e. an n × n complex Hermitian matrix
whose entries are i.i.d. up to the Hermitian condition, with each off-diagonal entry distributed as
N (0, 12) + iN (0, 12) and each diagonal entry N (0, 1). The ordered eigenvalues λ1 ≥ · · · ≥ λn (or,
without ordering, thought of as an unordered set) satisfy the joint probability density

p(λ1, . . . , λn) =
1

Zn,2

n∏
j=1

e−
1
2
λ2
j

∏
1≤i<j≤n

(λi − λj)
2, (2.2)

where Zn,2 is a normalization constant.
Moreover, if {ψk(λ)}∞k=0 is the family of Hermite polynomials, orthonormal with respect to

the measure w(λ) dλ = e−λ2/2 dλ on R (i.e.,

∫ ∞

−∞
ψk(λ)ψℓ(λ)w(λ) dλ = 1k=ℓ), then one can also

write

p(λ1, . . . , λn) = const · det
[
ψj−1(λk)e

−λ2k
4

]n
j,k=1

det
[
ψj−1(λk)e

−λ2k
4

]n
j,k=1

(2.3)

(the two determinants are identical, but let us keep this notation for future convenience).

The square determinant structure is extremely useful. It is precisely the β = 2 counterpart
of the squared Vandermonde factor

∏
i<j(λi − λj)

2.

Remark 2.7 (Hermite polynomials). There are various normalizations of Hermite polynomials.
In random matrix theory for the Gaussian ensembles, we often use the probabilists’ Hermite
polynomials (sometimes called Hek, but we use the notationHk). There are various normalizations
due to the factor in the exponent of x2.

A convenient definition for use with the weight e−x2/2 is:

Hk(x) = (−1)k e
x2

2
dk

dxk

(
e−

x2

2

)
, k = 0, 1, . . . , (2.4)

whose leading term is xk. Polynomials with the leading coeffient 1 are called monic. The first
few monic Hermite polynomials are

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 +3.

The difference between Hk and ψk entering Proposition 2.6 is in a constant normalization, since
Hk are monic but not orthonormal, while ψk are orthonormal but not monic.

Sketch of the determinantal representation. In brief, one observes that the factor
∏

i<j(λi−λj) is
exactly the Vandermonde determinant ∆(λ1, . . . , λn) = det

[
λj−1
k

]n
j,k=1

. Next, the Vandermonde
determinant is also equal to the determinant built out of any monic family of polynomials of the
corresponding degrees (by linear transformations), and so we get the desired representation.

We will work with Hermite polynomials and the determinantal structure in Proposition 2.6
in the next Lecture 5).
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3 Wigner semicircle law via tridiagonalization

If W is an n×n real Wigner matrix with entries of mean zero and variance 1 on the off-diagonal,
then as n → ∞, the empirical spectral distribution (ESD) of W/

√
n converges weakly almost

surely to the Wigner semicircle distribution:

µsc(dx) =
1

2π

√
4− x2 1|x|≤2 dx.

We already derived this in Lecture 2 by a direct combinatorial argument on the trace. Now we
present another proof by using the tridiagonal form of W . The argument is conceptually simpler
in some steps, because the matrix is sparser (only tridiagonal). At the same time, we will establish
the Wigner semicircle law for the general GβE case (but only Gaussian), and thus it will apply
to GUE and GSE.

3.1 Moments for tridiagonal matrices

Consider the rescaled GβE matrix T/
√
n:

T√
n

=


d1/

√
n α1/

√
n 0 · · ·

α1/
√
n d2/

√
n α2/

√
n

. . .

0 α2/
√
n d3/

√
n

. . .
...

. . .
. . .

. . .

 ,

where di ∼ N (0, 1) and αj ∼ 1√
2
χβ(n−j). We want to show that the ESD of T/

√
n converges

to the semicircle law. We will mostly consider expected traces of powers, and leave the analytic
parts of the argument to the reader.

The k-th (random) moment of the ESD 1
n

∑n
i=1 δλi/

√
n is

1

n
Tr

(
T√
n

)k
=

1

n1+
k
2

n∑
i1,...,ik=1

ti1,i2 · · · tik,i1 , (3.1)

where tij are the non-rescaled entries of T . But now tij is nonzero only if |i− j| ≤ 1, i.e. the (i, j)
entry is on the main or first super-/subdiagonal. In a closed product ti1i2 · · · tiki1 , we thus get a
closed walk in a linear graph on the vertex set {1, 2, . . . , n} with edges only between consecutive
indices.

The relevant combinatorial objects encoding these walks are lattice walks in Z2
≥0 starting

at (0,m), ending at (k,m), and consisting of steps (1, 0), (1, 1), and (1,−1). The steps (1, 0)
correspond to picking the diagonal element; steps (1, 1) correspond to picking iℓ+1 = iℓ + 1, and
steps (1,−1) correspond to iℓ+1 = iℓ − 1. See Figure 1 for an illustration of a path.

Now, each term in the sum in (3.1) corresponds to a path. Moreover, for each path shape,
there are O(n) summands corresponding to it. The number of paths of length k starting from a
fixed m is finite (independent of n for m≫ 1), so we need to look more closely at the asymptotics
of the product in (3.1). This product involves chi random variables which depend on n, too.
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x

y

Figure 1: Example of a lattice path starting at height 3.

3.2 Asymptotics of chi random variables

One additional technical point in analyzing T/
√
n is to note that αj is roughly

√
β(n− j)/2 for

large n. Indeed, we have

χ2
ν =

ν∑
i=1

Z2
i , E[χ2

ν ] = ν, Var[χ2
ν ] = 2ν.

Now, since we are dividing by
√
n, we have

αj√
n
∼

√
β

2

√
1− θ, θ =

j

n
∈ [0, 1].

This estimate is valid in the “bulk” region, that is, when θ is strictly between 0 and 1.
Let us make these estimates more precise. We have:

Proposition 3.1 (Pointwise asymptotics in the bulk). Fix small δ > 0, and let j range so that
θj := j/n ∈ [δ, 1− δ]. Then for each such j, we have1

αj√
n

=

√
β

2

(
1− j

n

)
+ Op

( 1√
n

)
,

In particular,

lim
n→∞

αj√
n

=

√
β

2
(1− θj) in probability.

Remark 3.2. Outside the bulk region (i.e. very close to j = 0 or j = n), one would need a
different statement to handle the case β(n− j) is not large. In our application, we only need the
bulk behavior. See also Problem D.3.

Meanwhile, on the diagonal, di/
√
n almost surely vanishes in the limit as n→ ∞, because di

is standard Gaussian and does not depend on n.

1Here and below, Op(·) denotes a term that is stochastically bounded at the indicated order as n → ∞. That
is, Xn = Op(an) means that for any ϵ > 0, there exists M > 0 such that P(|Xn/an| > M) < ϵ for all sufficiently
large n.
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3.3 Completing the proof: global semicircle behavior

Putting the above pieces together, we see that

T√
n
=

1

n

n∑
i1,...,ik=1

k∏
ℓ=1

tiℓiℓ+1√
n
, ik+1 = i1 by agreement. (3.2)

The terms in the sum have all iℓ’s close together (there are k indices, and they differ by ±1 from
each other). We may think that they are close to some θn, where θ ∈ [0, 1]. We can consider only
the case when δ < θ < 1 − δ for some fixed small δ > 0; the case of edges does not contribute
(see Problem D.3).

If at least one of the tij ’s in (3.2) is on the diagonal, the term vanishes in the limit. Therefore,
it suffices to consider only the off-diagonal αj ’s. The number of length k walks starting from

m = θn for θ > δ is just the number of lattice walks with steps (1,±1). This number is
(

k
k/2

)
.2

(From now on till the end of the section, we assume that k is even — the moments become zero
for odd k).

Fixing the starting location θ = iℓ
n ∈ (δ, 1− δ), we have

k∏
ℓ=1

tiℓiℓ+1√
n

→ (β/2)k/2(1− θ)k/2.

There is an extra factor 1/n in front in (3.2), which is interpreted as transforming the sum
over i1, . . . , ik into an integral in θ. We thus see that the moments converge to

(β/2)k/2
(
k

k/2

)∫ 1

0
(1− θ)k/2 dθ = (β/2)k/2

(
k

k/2

)
· 1

1 + k/2
,

and we recover our favorite Catalan moments of the semicircle distribution.
This completes the proof.

Remark 3.3 (The factor (β/2)k/2). Note that the factor βk/2 refers just to the scaling of the
Wigner semicircle law, and does not affect the semicircle shape. More precisely, the limiting
semicircle distribution lies from [−

√
2β,

√
2β].

The density of the semicircle distribution on [−
√
2β,

√
2β] is√

2− x2

β

π
√
β

, |x| <
√
2β,

and the moments are precisely (β/2)k/2Ck/2 (for even k).

4 Wigner semicircle law via Stieltjes transform

Let us stay in the tridiagonal setting, and explore a more analytic method to derive the Wigner
semicircle law.

2Not Catalan yet!
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4.1 Tridiagonal structure and characteristic polynomials

We let

T − λI =


d1 − λ α1 0 · · ·

α1 d2 − λ α2
. . .

0 α2 d3 − λ
. . .

...
. . .

. . .
. . .

 .

We want to understand eigenvalues, that is, zeros of the characteristic polynomial det(T − λI).

4.1.1 Three-term recurrence for the characteristic polynomial

As a warm-up, let us consider the characteristic polynomial of a tridiagonal matrix.
For each k = 1, . . . , n, denote by Tk the top-left k×k submatrix of T . Define the characteristic

polynomial of that block:
pk(λ) = det

(
Tk − λIk

)
.

By convention, set p0(λ) := 1. Then a determinant expansion argument along the first column
gives the following three-term recurrence relation:

Lemma 4.1 (Three-Term Recurrence). The characteristic polynomial pk(λ) of the k × k tridi-
agonal matrix Tk satisfies the three-term recurrence

pk+1(λ) = (dk+1 − λ) pk(λ)− α2
k pk−1(λ), k = 1, . . . , n− 1,

µ

See also Problem D.4.

4.1.2 Spectral connection and eigenvalues

The eigenvalues λ1, . . . , λn of T are exactly the roots of pn(λ). For any λ ∈ C, if λ is not an
eigenvalue, then

(
T − λI

)
is invertible.

When λ is close to a real eigenvalue, the behavior of the resolvent
(
T − λI

)−1
becomes

large. Tracking these poles in the complex plane is the key to the resolvent or Stieltjes transform
approach.

4.2 Stieltjes transform / resolvent

Recall that for a matrix A with real eigenvalues λ1, . . . , λn, the Stieltjes transform (or Green’s
function, or resolvent trace) is

Gn(z) =
1

n
Tr

[
(A− zI)−1

]
, z ∈ C \ R.

If z = x+ iy is in the upper half-plane (y > 0), this Gn(z) can be seen as

Gn(z) =

∫
R

dµn(λ)

λ− z
,
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where µn = 1
n

∑n
k=1 δλk

is the empirical spectral measure. Equivalently, ImGn(x+ i0+) encodes
the density of eigenvalues around x. Thus, understanding Gn(z) for large n pinpoints the limiting
spectral distribution.

Let us apply this to A = T/
√
n (an n× n tridiagonal matrix). We want to investigate

Gn(z) :=
1

n
Tr

(
T/

√
n− zI

)−1
,

for complex z. Since T/
√
n has nonzero entries only on the main and first off-diagonals, one can

write down a linear recurrence for the entries Rij of the resolvent R(z) = (T/
√
n − zI)−1, from

the equation ∑
k

(
T/

√
n− zI

)
ik
Rkj = 1i=j .

We have (
di√
n
− z

)
Rij +

αi√
n
Ri+1,j +

αi−1√
n
Ri−1,j = 1i=j .

Let fu(θ) := R⌊nθ⌋,⌊nu⌋. Then the above equation becomes(
d⌊nθ⌋√
n

− z

)
fu(θ) +

α⌊nθ⌋√
n
fu(θ + 1/n) +

α⌊nθ⌋−1√
n

fu(θ − 1/n) = 1θ=u.

Scaling with n (and ignoring the boundary conditions and convergence issues), we get a differential
equation for fu(θ):

−zfu(θ) +
√
β(1− θ)

2

[
f ′′u (θ) + 2fu(θ)

]
= δ(θ − u). (4.1)

The resolvent trace (the Stieltjes transform) is then the integral of the solution:

1

n

n∑
i=1

Rii ∼ G(z) :=

∫ 1

0
fθ(θ) dθ.

At this point, I am stuck on how to pass from (4.1) to the Stieltjes
transform G(z). This would be an excellent topic to explore for a
presentation. See Problem D.7.

4.3 Approach via continued fractions

We derive the Wigner semicircle law using the continued fraction representation of the Stieltjes
transform (or Green’s function) associated with a tridiagonal (Jacobi) matrix. In the Dumitriu–
Edelman model for the GUE (let us assume β = 2 for simplicity) after appropriate rescaling, the
matrix’s diagonal entries vanish and the off-diagonal entries become essentially constant in the
bulk. This leads to a homogeneous three-term recurrence for the corresponding monic orthogonal
polynomials. We then show that the Stieltjes transform of the limiting measure may be written
as an infinite continued fraction, which yields a quadratic self–consistent equation. Solving that
equation and applying the Stieltjes inversion formula recovers the semicircle density.
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A real symmetric tridiagonal matrix (a Jacobi matrix ) has the form

J =



a0 b1 0 · · · 0

b1 a1 b2
. . .

...

0 b2 a2
. . . 0

...
. . .

. . .
. . . bn−1

0 · · · 0 bn−1 an−1


,

with bj > 0. Associated with J is a sequence of monic polynomials {pn(z)}n≥0 defined by the
three–term recurrence

p0(z) = 1,

p1(z) = z − a0,

pn+1(z) = (z − an)pn(z)− b2n pn−1(z), n ≥ 1.

(4.2)

It is well known that there exists a probability measure µ on R such that the polynomials {pn(z)}
are orthogonal with respect to µ.

In the Dumitriu–Edelman tridiagonal model for the GUE (with β = 2) the matrix is con-
structed so that, after rescaling by

√
n, one obtains

T√
n
=


d1/

√
n α1/

√
n 0 · · ·

α1/
√
n d2/

√
n α2/

√
n

. . .

0 α2/
√
n d3/

√
n

. . .

...
. . .

. . .
. . .

 ,

with

di ∼ N (0, 1), αj ∼
1√
2
χ2(n−j).

In the large n limit, the diagonal entries di/
√
n vanish and (in the bulk) one has

α2
j

n
→ 1.

Thus, in the limit the recurrence coefficients become

an = 0, bn = 1,

for all n. In this homogeneous case the three-term recurrence (4.2) reduces to

p0(z) = 1, p1(z) = z, pn+1(z) = z pn(z)− pn−1(z).

The Stieltjes transform of the measure µ is defined by

m(z) =

∫
R

dµ(x)

z − x
, z ∈ C \ R.
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A classical result in the theory of orthogonal polynomials (e.g., see [Sok20]) is that m(z)
may be written as the continued fraction

m(z) =
1

z − a0 −
b21

z − a1 −
b22

z − a2 −
b23

z − a3 − · · ·

. (4.3)

In our case, since an = 0 for all n and bn = 1 for all n, this simplifies to

m(z) =
1

z −
1

z −
1

z −
1

. . .

. (4.4)

Observe that the infinite continued fraction in (4.4) is self–similar; that is, if we denote the
entire continued fraction by m(z), then the tail of the continued fraction is again m(z). Thus we
have the relation

m(z) =
1

z −m(z)
.

Multiplying both sides by the denominator yields

m(z)
(
z −m(z)

)
= 1.

Expanding the left–hand side we obtain the quadratic equation

m(z)2 − z m(z) + 1 = 0. (4.5)

The quadratic (4.5) has the solutions

m(z) =
z ±

√
z2 − 4

2
.

To determine the correct branch, recall that for z in the upper half–plane (Im(z) > 0) we must
have Im m(z) > 0. The proper solution is

m(z) =
z −

√
z2 − 4

2
, (4.6)

where the square root is defined so that
√
z2 − 4 ∼ z as z → ∞ and Im

√
z2 − 4 > 0 when

Im(z) > 0.
The density ρ(x) of the measure µ is recovered from the Stieltjes transform via the inversion

formula:

ρ(x) =
1

π
lim
ϵ→0+

Im m(x+ iϵ).
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For x in the interval (−2, 2) one computes that√
(x+ iϵ)2 − 4 −−−→

ϵ→0+
i
√
4− x2.

Thus, from (4.6) we have, for x ∈ (−2, 2),

m(x+ i0) =
x− i

√
4− x2

2
.

Taking the imaginary part gives

Im m(x+ i0) =

√
4− x2

2
,

so that

ρ(x) =
1

π
Im m(x+ i0) =

1

2π

√
4− x2, x ∈ (−2, 2).

This is precisely the celebrated Wigner semicircle law.

5 Determinantal point processes (discrete)

We are now going to start the discussion of the local eigenvalue behavior at β = 2, started in
Section 2.3. We begin with a general discussion of determinantal point processes (DPPs), starting
in discrete world. The continuous world is going to be considered in the next Lecture 5.

In this section, we introduce determinantal point processes (DPPs) over a discrete state space
and explore some of their properties. Our main reference is [Bor11].

Setup. Let X be a (finite or countably infinite) discrete set endowed with the counting measure
µ. A point configuration on X is any subset X ⊂ X, finite or infinite, with no repeated points.3

We write Conf(X) for the set of all point configurations, which carries the natural σ-algebra
generated by the functions 1{x∈X}, x ∈ X. A random point process P on X is a probability
measure on Conf(X).

Definition 5.1 (Determinantal point process). A random point process P on a discrete set X is
determinantal if there exists a kernel function K : X×X → C such that for every finite collection
of pairwise distinct points x1, . . . , xn ∈ X,

P{x1, . . . , xn ∈ X} = det
[
K(xi, xj)

]n
i,j=1

. (5.1)

That is, all finite-dimensional distributions of P take a determinantal form. The function K is
called a correlation kernel for P .

Correlation functions and the kernel. The condition (5.1) captures all finite-dimensional
distributions of P . Equivalently, let

ρn(x1, . . . , xn) := P{there is a particle at each xi}
3Some texts allow multiplicities, but we disallow them here.
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for distinct x1, . . . , xn. In the discrete setting, ρn is sometimes called the (unordered) correlation
function. The process is determinantal if and only if

ρn(x1, . . . , xn) = det
[
K(xi, xj)

]n
i,j=1

for each n ≥ 1.

Basic properties. If P is a DPP with correlation kernel K : X × X → C, then for any subset
I ⊂ X,

P{X ∩ I = ∅} = det
[
1−KI

]
, (5.2)

where KI is the operator
[
K(x, y)

]
x,y∈I (viewed as a matrix if X is finite, or an infinite matrix

if X is countably infinite with convergent sums). More generally, if I1, . . . , Im ⊂ X are disjoint
subsets, then the joint event {|X ∩ Ik| = nk for 1 ≤ k ≤ m} can be expressed via the determinant
det

[
1−

∑m
k=1 zkKIk

]
and its derivatives.

Remark 5.2. For any function ϕ : X → C such that the operator
[
(1 − ϕ(x))K(x, y)

]
x,y∈X is

trace class, the exponential generating function for ϕ is

E
[∏
x∈X

ϕ(x)
]
= det

[
1− (1− ϕ)K

]
.

This identity makes determinantal point processes more tractable than general processes.

A key example: one-dependent processes on Z

We highlight an important application from [BDF10] that connects 1-dependent processes on an
integer segment (or a finite subset of Z) to determinantal processes. A point process P on Z
is 1-dependent if, for any two disjoint finite sets A,B ⊂ Z with dist(A,B) ≥ 2, the correlation
function factorizes:

ρ|A|+|B|(A ∪B) = ρ|A|(A) ρ|B|(B).

Theorem 5.3 ([BDF10, Thm. 1.1]]). Any one-dependent point process on a finite segment of Z
is a determinantal process. Moreover, its correlation kernel K can be explicitly computed.

Example 5.4 (Adding a list of numbers). Consider an i.i.d. sequence of random variables {ξj}
(each taking values in {0, 1}), and define the partial sums Sn =

∑n
j=1 ξj . The occupancy pro-

cess, marking site Sn as “occupied,” forms a 1-dependent sequence. By Theorem 5.3, it is thus
determinantal.

6 Application of determinantal processes to random matrices at
β = 2

In this final section of the lecture, we illustrate how the theory of determinantal point processes
(DPPs) introduced in Section 5 applies to the study of local eigenvalue statistics of random
matrices. We concentrate on the β = 2 setting, where DPPs typically govern the joint behavior
of eigenvalues at microscopic (local) scales in the bulk and at the edge of the spectrum. We also
include a simpler example of a Poisson process to highlight the role of correlation functions.
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6.1 Local eigenvalue statistics (bulk and edge scaling limits)

Given an n× n random Hermitian matrix W whose eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn are real, we
often want to study the local arrangement of the eigenvalues:

• Bulk regime: eigenvalues near some interior point α of the limiting (global) spectral support,
rescaled so that we see “microscopic” spacing on the order of O( 1n). For Wigner or Gaussian
ensembles, one typically looks at a point α in the interior (−2, 2) of the semicircle support
and then rescales eigenvalues around α by the typical local spacing 1/(nρ(α)). Here ρ(α)
is the density of eigenvalues at α, which is semicircle density in the Wigner case.

• Edge regime: eigenvalues near an endpoint of the support (for instance, near x = 2 for the
semicircle distribution). One then uses a rescaling of order n2/3 (in many classical models)
to see nontrivial statistics describing how eigenvalues “peel off” near the boundary.

In both cases, one replaces the original sequence of eigenvalues {λi} by a point process on R.
The bulk scaling leads to the sine-kernel process (e.g. sin(π(x − y))/(π(x − y)) in the GUE) or
more generally to other determinantal processes. The edge scaling typically leads to the Airy-
kernel process. For Gaussian ensembles at β = 2, these processes are determinantal, and one
can explicitly write correlation kernels involving special functions (sine, Airy, and more generally
Hermite polynomials).

6.2 Correlation functions and densities

We recall from Section 5 (in the discrete setting) that a point process X on a space X can be
described by its correlation functions {ρk}∞k=1. In the continuous setting (e.g. X = R or an
interval), these are defined so that

ρk(x1, . . . , xk) dx1 · · · dxk = (probability that there is a particle in each small set dxi near xi, for 1 ≤ i ≤ k).
(6.1)

Equivalently, ρk is the k-th (unordered) joint density of the process. In particular,

ρ1(x) dx = expected number of particles in a small interval of length dx near x.

For a determinantal point process in the continuous setting, there is a kernel K(x, y) such that

ρk(x1, . . . , xk) = det
[
K(xi, xj)

]k
i,j=1

for each k ≥ 1. (6.2)

The simplest example is the Poisson process (see Section 6.3), which in fact is not determinantal
but helps illustrate how correlation functions characterize clustering or repulsion of points.

6.3 Poisson process example

A Poisson point process with intensity λ > 0 on R is defined by:

• Particles are scattered independently over real line,

• The expected number of particles in an interval I ⊂ R is λ|I|.
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Equivalently, one often states that the number of points in any interval I follows a Poisson(λ|I|)
distribution, and disjoint intervals are filled independently. One can also check that the correlation
functions factorize completely:

ρk(x1, . . . , xk) = λk.

Hence, in the Poisson process, there is no “interaction” or “repulsion” between points: the position
of one particle does not affect the probability of having other particles nearby. In contrast, a
determinantal point process typically exhibits repulsion: if you know a particle is present near
x, it lowers the density of particles nearby. This effect is crucial in random matrix ensembles at
β = 2.

D Problems (due 2025-02-28)

D.1 Eigenvalue density of GβE

Read and understand the main principles of the proof of Theorem 2.5 in [DE02].

D.2 Chi-square mean and variance

Let X be a random variable with χ2
ν distribution. Compute the mean and variance of X. (If ν

is an integer, you can use the fact that χ2
ν is a sum of ν independent squares of standard normal

random variables. How to extend this to non-integer ν?)

D.3 Edge contributions in the tridiagonal moment computation

Show that the cases when the iℓ’s are close to the edge (θ = 0 or 1) in (3.2) do not contribute to
the limit of the moments.

D.4 Hermite polynomials and three-term recurrence

Show that the monic Hermite polynomials Hk(x) (2.4) satisfy the three-term recurrence relation

Hk(x) = xHk−1(x)− (k − 1)Hk−2(x).

D.5

Compute the determinant

det


1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

 .

D.6 Gap probabilities

1. Prove identity (5.2) for DPPs.

2. Prove the generalization computing {|X ∩ Ik| = nk for 1 ≤ k ≤ m}.
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D.7 Stieltjes transform approach for tridiagonal matrices

Complete the derivation from Section 4.2 to obtain the limiting Stieltjes transform G(z) for the
tridiagonal matrix T/

√
n.

Remark D.1. This is more of a literature search. It is extensive, and would make an excellent
topic for a presentation.
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E.10 Existence of Determinantal Point Processes with a Given Kernel . . . . . . . . . . 13

1 Recap

In Lecture 4 we discussed global spectral behavior of tridiagonal GβE random matrices, and
obtained the Wigert semicircle law for the eigenvalue density.

In this lecture we shift our focus to another powerful technique in random matrix theory:
the theory of determinantal point processes (DPPs). In the β = 2 (GUE) case the joint eigen-
value distributions can be written in determinantal form. We begin by discussing the discrete
version of determinantal processes, and then derive the correlation kernel for the GUE using
orthogonal polynomial methods. Finally, we show how the Christoffel–Darboux formula yields a
compact representation of the kernel and indicate how one may represent it as a double contour
integral—an expression well suited for steepest descent analysis in the large-n limit.

2 Discrete determinantal point processes

2.1 Definition and basic properties

Let X be a (finite or countably infinite) discrete set. A point configuration on X is any subset
X ⊂ X (with no repeated points). A random point process is a probability measure on the space
of such configurations.

Definition 2.1 (Determinantal Point Process). A random point process P on X is called deter-
minantal if there exists a function (the correlation kernel) K : X × X → C such that for any n
and every finite collection of distinct points x1, . . . , xn ∈ X, the joint probability that these points
belong to the random configuration is

P{x1, . . . , xn ∈ X} = det
[
K(xi, xj)

]n
i,j=1

.

Determinantal processes are very useful in probability theory and random matrices. They
are a natural extension of Poisson processes, and have some parallel properties. Many properties
of determinantal processes can be derived from “linear algebra” (broadly understood) applied to
the kernel K. There are a few surveys on them: [Sos00], [HKPV06], [Bor11], [KT12]. Let us just
mention two useful properties.

Proposition 2.2 (Gap Probability). If I ⊂ X is a subset, then

P{X ∩ I = ∅} = det
[
I −KI

]
,

where KI is the restriction of the kernel to I. If I is infinite, then the determinant is understood
as a Fredholm determinant.

Remark 2.3. The Fredholm determinant might “diverge” (equal to 0 or 1).
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Proposition 2.4 (Generating functions). Let f : X → C be a function such that the support of
f − 1 is finite. Then the generating function of the multiplicative statistics of the determinantal
point process is given by

E

[ ∏
x∈X

f(x)

]
= det

[
I + (∆f − I)K

]
,

where the expectation is over the random point configuration X ⊆ X, ∆f denotes the operator of
multiplication by f (i.e., (∆fg)(x) = f(x)g(x)) and the determinant is interpreted as a Fredholm
determinant if X is infinite.

Remark 2.5 (Fredholm Determinant — Series Definition). The Fredholm determinant of an
operator A on ℓ2(X) is given by the series

det(I +A) =

∞∑
n=0

1

n!

∑
x1,...,xn∈X

det
[
A(xi, xj)

]n
i,j=1

,

where the term corresponding to n = 0 is defined to be 1.

3 Determinantal structure in the GUE

3.1 Correlation functions as densities with respect to Lebesgue measure

In the discrete setting discussed above the joint probabilities of finding points in specified subsets
of X are given by determinants of the kernel evaluated at those points. When the underlying
space is continuous (typically a subset of R or Rd), one works instead with correlation functions
which serve as densities with respect to the Lebesgue measure.

Let X ⊂ R be a random point configuration. The n-point correlation function ρn(x1, . . . , xn)
is defined by the relation

P{there is a point in each of the infinitesimal intervals [xi, xi + dxi], i = 1, . . . , n}
= ρn(x1, . . . , xn) dx1 · · · dxn.

For a determinantal point process the correlation functions take a determinantal form:

ρk(x1, . . . , xk) = det
[
K(xi, xj)

]k
i,j=1

.

Remark 3.1. The reference measure does not necessarily have to be the Lebesgue measure. For
example, in the discrete setting, we can also talk about the reference measure, it is the counting
measure. The correlation kernel K(x, y) is better understood not as a function of two variables,
but as an operator on the Hilbert space L2(X, dµ), where µ is the reference measure. One can
also write K(x, y)µ(dy) or K(x, y)

√
µ(dx)µ(dy) to emphasize this structure.

This formulation is particularly useful in the continuous setting, as it allows one to express
statistical properties of the point process in terms of integrals over the kernel. For example, the
expected number of points in a measurable set A ⊂ R is given by

E[#(X ∩A)] =
∫
A
ρ1(x) dx,

while higher order joint intensities provide information about correlations between points.
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3.2 The GUE eigenvalues as DPP

3.2.1 Setup

We start from the joint eigenvalue density for the Gaussian Unitary Ensemble (GUE)

p(x1, . . . , xn)dx1 · · · dxn =
1

Zn,2

n∏
j=1

e−x2
j/2

∏
1≤i<j≤n

(xi − xj)
2dx1 · · · dxn. (3.1)

We will show step by step why this is a determinantal point process,

ρk(x1, . . . , xk) = det
[
Kn(xi, xj)

]k
i,j=1

, k ≥ 1,

with the kernel defined as

Kn(x, y) =

n−1∑
j=0

ψj(x)ψj(y),

where the functions

ψj(x) =
1√
hj
pj(x)

√
w(x), w(x) = e−x2/2,

are constructed from the monic Hermite polynomials {pj(x)} which are orthogonal with respect
to the weight w(x): ∫ ∞

−∞
pj(x)pk(x)e

−x2/2 dx = hj δjk.

Recall that “monic” means that the leading coefficient of pj(x) is 1, and we divide by the norm
to make the polynomials orthonormal.

3.2.2 Writing the Vandermonde as a determinant

The product ∏
1≤i<j≤n

(xi − xj)
2

is the square of the Vandermonde determinant. Recall that the Vandermonde determinant is
given by

∆(x1, . . . , xn) =
∏

1≤i<j≤n

(xj − xi) = det


1 x1 x21 · · · xn−1

1

1 x2 x22 · · · xn−1
2

...
...

...
. . .

...

1 xn x2n · · · xn−1
n

 .

Thus, we have ∏
1≤i<j≤n

(xi − xj)
2 =

(
det

[
xj−1
i

]n
i,j=1

)2

.
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3.2.3 Orthogonalization by linear operations

Since determinants are invariant under elementary row or column operations, we can replace the
monomials xj−1 by any sequence of monic polynomials of degree j − 1. In particular, we choose
the monic Hermite polynomials pj−1(x) and obtain

det
[
xj−1
i

]n
i,j=1

= det
[
pj−1(xi)

]n
i,j=1

.

The orthogonality condition for these polynomials is∫ ∞

−∞
pj(x)pk(x)e

−x2/2 dx = hj δjk.

We define the functions
ϕj(x) = pj(x)e

−x2/4,

and then introduce the orthonormal functions

ψj(x) =
1√
hj
ϕj(x) =

1√
hj
pj(x)e

−x2/4.

Note that here the weight splits as e−x2/2 = e−x2/4e−x2/4, which is useful in the next step.

3.2.4 Rewriting the density in determinantal form

Substituting the determinant form into the joint density (3.1), we have

p(x1, . . . , xn) =
1

Zn,2

n∏
j=1

e−x2
j/2

[
det

[
pj−1(xi)

]n
i,j=1

]2
.

Incorporate the weight factors into the determinant by writing

n∏
i=1

e−x2
i /2 =

n∏
i=1

(
e−x2

i /4 · e−x2
i /4

)
,

so that
n∏

i=1

e−x2
i /4 det

[
pj−1(xi)

]n
i,j=1

= det
[
ϕj−1(xi)

]n
i,j=1

.

Thus, the joint density becomes

p(x1, . . . , xn) =
1

Z̃n,2

[
det

[
ϕj−1(xi)

]n
i,j=1

]2
.

This squared-determinant structure is characteristic of determinantal point processes.
We now compute the k-point correlation function by integrating out the remaining n − k

variables:

ρk(x1, . . . , xk) =
n!

(n− k)!

∫
Rn−k

p(x1, . . . , xn) dxk+1 · · · dxn.
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Remark 3.2. When defining the k-point correlation function, one might initially expect a com-
binatorial factor corresponding to the number of ways of choosing k variables out of n, namely(
n
k

)
= n!

k!(n−k)! . The absence of an extra k! in the denominator is due to the fact that x1, . . . , xk
are fixed, and we are not integrating over all permutations of these variables.

Theorem 3.3 (Determinantal structure for squared-determinant densities). We have

ρk(x1, . . . , xk) = det
[
Kn(xi, xj)

]k
i,j=1

,

with the correlation kernel given by

Kn(x, y) =

n−1∑
j=0

ψj(x)ψj(y).

Proof. We begin by writing the joint density as

p(x1, . . . , xn) =
1

Z̃n,2

[
det

[
ϕj−1(xi)

]n
i,j=1

]2
.

Expanding the square of the determinant, we have[
det

[
ϕj−1(xi)

]n
i,j=1

]2
=

∑
σ,τ∈Sn

sgn(σ) sgn(τ)
n∏

i=1

ϕσ(i)−1(xi)ϕτ(i)−1(xi),

where Sn denotes the symmetric group on n elements.
Next, to obtain the k-point correlation function ρk(x1, . . . , xk), we integrate out the remaining

n− k variables:

ρk(x1, . . . , xk) =
n!

(n− k)!

∫
Rn−k

p(x1, . . . , xn) dxk+1 · · · dxn.

Since the joint density is symmetric under permutations of the variables, we may assume without
loss of generality that the first k variables are the ones being fixed.

Substituting the expansion of the squared determinant into the expression for ρk, we have

ρk(x1, . . . , xk) =
n!

(n− k)! Z̃n,2

∑
σ,τ∈Sn

sgn(σ) sgn(τ)
k∏

i=1

ϕσ(i)−1(xi)ϕτ(i)−1(xi)

n∏
j=k+1

∫
R
ϕσ(j)−1(x)ϕτ(j)−1(x) dx

 .

Now, change the functions ϕj(x) to the orthonormal functions ψj(x) using the relation

ϕj(x) =
√
hj ψj(x).

This substitution yields∫
R
ϕσ(j)−1(x)ϕτ(j)−1(x) dx =

√
hσ(j)−1hτ(j)−1

∫
R
ψσ(j)−1(x)ψτ(j)−1(x) dx.
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By the orthonormality of the ψj ’s, we have∫
R
ψσ(j)−1(x)ψτ(j)−1(x) dx = δσ(j),τ(j).

Therefore, for the indices j = k + 1, . . . , n, the integrals enforce the condition σ(j) = τ(j). As
a result, the double sum over σ and τ reduces to a single sum over permutations on the first k
indices, and the factors for the remaining indices simply contribute to the normalization constant.

Collecting these results, one deduces that

ρk(x1, . . . , xk) = const · det
[
Kn(xi, xj)

]k
i,j=1

,

where the kernel is given by

Kn(x, y) =
n−1∑
j=0

ψj(x)ψj(y).

To complete the proof, one must verify that the normalization constant is indeed 1. We can
achieve this by using the fact that pn is the same as ρn. Then, integrating ρn over all variables
gives the normalization constant, and we have∫

Rn

det
[n−1∑
ℓ=0

ψℓ(xi)ψℓ(xj)
]n
i,j=1

dx1 · · · dxn = n!, (3.2)

and the integral over x1 > · · · > xn is equal to 1, as it should be.
To prove (3.2), define the n× n matrix

A =
[
ψj−1(xi)

]n
i,j=1

.

Then, by the Cauchy–Binet formula,

det
[
Kn(xi, xj)

]n
i,j=1

= det
[
AA⊤

]
= det

[
A
]2
.

The Andreief integration formula tells us that∫
Rn

det
[
A
]2
dx1 · · · dxn = n! det

[∫
R
ψi−1(x)ψj−1(x) dx

]n
i,j=1

.

Since the ψj ’s are orthonormal, ∫
R
ψi−1(x)ψj−1(x) dx = δij ,

and hence
det

[
δij

]n
i,j=1

= 1.

This completes the proof of the theorem.
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3.3 Christoffel–Darboux formula

Theorem 3.4 (Christoffel–Darboux Formula). Let {pj(x)}j≥0 be a family of monic orthogonal
polynomials with respect to a weight function w(x) on an interval I ⊂ R. Their squared norms
are given by ∫

I
pj(x) pk(x)w(x) dx = hj δjk.

Define the orthonormal functions

ψj(x) =
1√
hj
pj(x)

√
w(x).

Then the kernel

Kn(x, y) =

n−1∑
j=0

ψj(x)ψj(y) =
√
w(x)w(y)

n−1∑
j=0

pj(x)pj(y)

hj
,

admits the closed-form representation

Kn(x, y) =
√
w(x)w(y)

1

hn−1

pn(x)pn−1(y)− pn−1(x)pn(y)

x− y
, (3.3)

with the obvious continuous extension when x = y.

Proof. Define

Sn(x, y) =
n−1∑
j=0

pj(x)pj(y)

hj
,

so that
Kn(x, y) =

√
w(x)w(y)Sn(x, y).

Our goal is to prove that

(x− y)Sn(x, y) =
1

hn−1

[
pn(x)pn−1(y)− pn−1(x)pn(y)

]
. (3.4)

Since the polynomials are monic and orthogonal, they satisfy the three-term recurrence rela-
tion

x pj(x) = pj+1(x) + αj pj(x) + βj pj−1(x), j ≥ 0,

with the convention p−1(x) = 0 and where βj =
hj

hj−1
. This recurrence comes from the three facts:

1. The polynomials are orthogonal with respect to the weight function w(x) supported on the
real line;

2. The operator of multiplication by x is self-adjoint with respect to the inner product induced
by w(x).

3. The multiplication by x of pj gives pj+1 plus a correction of degree ≤ j.
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Writing the recurrence for both pj(x) and pj(y) yields:

x pj(x) = pj+1(x) + αj pj(x) + βj pj−1(x),

y pj(y) = pj+1(y) + αj pj(y) + βj pj−1(y).

Multiplying the first equation by pj(y) and the second by pj(x), and then subtracting, we obtain:

(x− y)pj(x)pj(y) = pj+1(x)pj(y)− pj(x)pj+1(y) + βj

[
pj−1(x)pj(y)− pj(x)pj−1(y)

]
.

Dividing by hj and summing over j = 0, . . . , n− 1 gives:

(x− y)Sn(x, y) =

n−1∑
j=0

1

hj

[
pj+1(x)pj(y)− pj(x)pj+1(y)

]
+

n−1∑
j=0

βj
hj

[
pj−1(x)pj(y)− pj(x)pj−1(y)

]
.

A reindexing of the sums shows that the series telescopes, leaving only the boundary terms. In
particular, one finds

(x− y)Sn(x, y) =
1

hn−1

[
pn(x)pn−1(y)− pn−1(x)pn(y)

]
.

This establishes (3.4), and hence the representation (3.3) for Kn(x, y).
The continuous extension to x = y is obtained via l’Hôpital’s rule.

4 Double Contour Integral Representation for the GUE Kernel

4.1 One contour integral representation for Hermite polynomials

Recall that the GUE kernel is defined by

KN (x, y) =

N−1∑
n=0

ψn(x)ψn(y),

with the orthonormal functions

ψn(x) =
1√
hn

pn(x) e
−x2/4,

where the (monic, probabilists’) Hermite polynomials are given by

pn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2,

and satisfy the generating function

exp
(
xt− t2

2

)
=

∑
n≥0

pn(x)
tn

n!
.

9



By Cauchy’s integral formula we can write

pn(x) =
n!

2πi

∮
C

exp
(
xt− t2

2

)
tn+1

dt,

where the contour C is a simple closed curve encircling the origin. Therefore,

ψn(x) =
1√
hn

pn(x) e
−x2/4 =

e−x2/4

√
hn

n!

2πi

∮
C

exp
(
xt− t2

2

)
tn+1

dt.

4.2 Another contour integral representation for Hermite polynomials

Note also that ∫ ∞

−∞
e−t2+

√
2i t x dt =

√
π e−x2/2.

Differentiating both sides n times with respect to x (and using the fact that in our convention
the Gaussian appears with x2/2) yields

dn

dxn

(
e−x2/2

)
=

1√
π

∫ ∞

−∞

(√
2i t

)n
e−t2+

√
2i t x dt.

Changing variables via s = i t (so that t = −i s and dt = −i ds) one obtains

dn

dxn

(
e−x2/2

)
=

(
√
2)n

i
√
π

∫ i∞

−i∞
sn es

2+
√
2 s x ds.

Multiplying by (−1)nex
2/2 we deduce that

pn(x) = (−1)nex
2/2 d

n

dxn

(
e−x2/2

)
=
i (
√
2)n ex

2/2

√
π

∫ i∞

−i∞
sn es

2−
√
2 s x ds. (4.1)

Now, recall that the orthonormal functions are defined as

ψn(x) =
1√
hn

pn(x) e
−x2/4,

so that by (4.1)

ψn(x) =
i ex

2/4

√
π hn

∫ i∞

−i∞
(
√
2s)n es

2−
√
2 s x ds =

i ex
2/4

√
2π hn

∫ i∞

−i∞
sn es

2/2−s x ds.

4.3 Double contour integral representation for the GUE kernel

We have (Problem E.9)

hn =

∫ ∞

−∞
pn(x)

2 e−x2/2 dx = n!
√
2π.
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Therefore, we can sum up the kernel (another proof of the Christoffel–Darboux formula):

Kn(x, y) =

n−1∑
k=0

ψk(x)ψk(y)

=
n−1∑
k=0

e−x2/4

√
hk

k!

2πi

∮
C

exp
(
xt− t2

2

)
tk+1

dt
i ey

2/4

√
2π hk

∫ i∞

−i∞
sk es

2/2−s y ds

= e(y
2−x2)/4

n−1∑
k=0

1

4π2

∮
C

exp
(
xt− t2

2

)
tk+1

dt

∫ i∞

−i∞
sk es

2/2−s y ds.

We can now extend the sum to k = −∞, and get a formula for the GUE kernel as a double
contour integral:

Kn(x, y) =
e(y

2−x2)/4

4π2

∮
C

∫ i∞

−i∞

exp
{

s2

2 − sy − t2

2 + tx
}

s− t

(s
t

)n
dsdt.

Details will be in the next Lecture 6.

Remark 4.1. Many other versions of the GUE / unitary invariant ensembles admit determinantal
structure:

1. The GUE corners process [JN06]

2. The Dyson Brownian motion (e.g., add a GUE to a diagonal matrix) [NF98]

3. GUE corners plus a fixed matrix [FF14]

4. Corners invariant ensembles with fixed eigenvalues UDU †, where D is a fixed diagonal
matrix and U is Haar distributed on the unitary group [Met13]

E Problems (due 2025-03-09)

E.1 Gap Probability for Discrete DPPs

Let X be a (finite or countably infinite) discrete set and suppose that a point process on X is
determinantal with kernel

K : X× X → C,

so that for any finite collection of distinct points x1, . . . , xn ∈ X the joint probability that these
points belong to the configuration is

P{x1, . . . , xn ∈ X} = det
[
K(xi, xj)

]n
i,j=1

.

Show that for any subset I ⊂ X (finite or such that the Fredholm determinant makes sense) the
gap probability

P{X ∩ I = ∅} = det
[
I −KI

]
,

where KI is the restriction of K to I × I.

11
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E.2 Generating Functions for Multiplicative Statistics

Let f : X → C be a function such that the support of f−1 is finite. Prove that for a determinantal
point process on X with kernel K the generating function

E
[∏
x∈X

f(x)
]
= det

[
I + (∆f − I)K

]
holds, where ∆f is the multiplication operator defined by (∆fg)(x) = f(x)g(x). Hint: Expand
the Fredholm determinant series and compare with the definition of the correlation functions.

E.3 Variance

Let I be a finite interval, and let N(I) be the number of points of a determinantal point process
in I with the kernel K(x, y). Find Var(I) in terms of the kernel K(x, y).

E.4 Formula for the Hermite polynomials

Show that the monic Hermite polynomials pj(x) are given by

pn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2.

E.5 Generating function for the Hermite polynomials

Show that
∞∑
n=0

tn

n!
pn(x) = etx−t2/2.

E.6 Projection Property of the GUE Kernel

Show that the kernel

Kn(x, y) =

n−1∑
j=0

ψj(x)ψj(y),

(with the orthonormal functions ψj defined as in the lecture) acts as an orthogonal projection
operator on L2(R). In other words, prove that for all x, y ∈ R∫ ∞

−∞
Kn(x, z)Kn(z, y) dz = Kn(x, y).

E.7 Recurrence Relation for the Hermite Polynomials

Show that the monic Hermite polynomials defined by

pn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2

satisfy the three-term recurrence relation

pn+1(x) = x pn(x)− n pn−1(x),

with the convention p−1(x) = 0.

12



E.8 Differential Equation for the Hermite Polynomials

Prove that the monic Hermite polynomials pn(x) satisfy the second-order differential equation

p′′n(x)− x p′n(x) + n pn(x) = 0.

E.9 Norm of the Hermite Polynomials

Show that

hn =

∫ ∞

−∞
pn(x)

2 e−x2/2 dx = n!
√
2π.

E.10 Existence of Determinantal Point Processes with a Given Kernel

Let X be a locally compact Polish space equipped with a reference measure µ, and let K(x, y)
be the kernel of an integral operator K acting on L2(X,µ). Suppose that:

1. K is Hermitian (i.e. K(x, y) = K(y, x)),

2. K is locally trace class, and

3. 0 ≤ K ≤ I as an operator, that is, both the operator K and the operator I − K are
nonnegative definite. For K, this condition is∫

X

∫
X
f(x)K(x, y)f(y) dµ(x) dµ(y) ≥ 0

for all f ∈ L2(X,µ).

Under these conditions there exists a unique determinantal point process on X with correlation
functions given by

ρn(x1, . . . , xn) = det
[
K(xi, xj)

]n
i,j=1

.

Explain why the condition 0 ≤ K ≤ I is necessary. For the proof of the existence and uniqueness
of the determinantal point process, see [Sos00].
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