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Chapter 1

Moments of random
variables and random
matrices

1.1 Why study random matrices?

TODO FOR BOOK FORMAT: add ref to git and live sims as below
TODO FOR BOOK FORMAT: fix texorpdfstring for titles
TODO FOR BOOK FORMAT: catch just a small handful of undefined

references

On the history. Random matrix theory (RMT) is a fascinating field that
studies properties of matrices with randomly generated entries, focusing (at
least initially) on the statistical behavior of their eigenvalues. This theory
finds its roots in the domain of nuclear physics through the pioneering work
of Wigner, Dyson, and others [Wigh5], [Dys62a], [Dys62b], who utilized it to
analyze the energy levels of complex quantum systems. Other, earlier roots
include statistics [Dix05] and classical Lie groups [Hur97]. Today, RMT
has evolved to span a wide array of disciplines, from pure mathematics,
including areas such as integrable systems and representation theory, to
practical applications in fields like data science and engineering.

Classical groups and Lie theory. Random matrices are deeply con-
nected to classical Lie groups, particularly the orthogonal, unitary, and
symplectic groups. This connection emerges primarily due to the invariance
properties of these groups, such as those derived from the Haar measure.

11



CHAPTER 1. MOMENTS OF RANDOM VARIABLES AND RANDOM MATRICES12

Random matrices significantly impact representation theory, linking to in-
tegrals over matrix groups through character expansions. The symmetry
classes of random matrix ensembles, like the Gaussian Orthogonal (GOE),
Unitary (GUE), and Symplectic (GSE), correspond to respective symmetry
groups.

Toolbox. RMT utilizes a broad range of tools ranging across all of math-
ematics, including probability theory, combinatorics, analysis (classical and
modern), algebra, representation theory, and number theory. The theory
of random matrices is a rich source of problems and techniques for all of
mathematics.

The main content of this course is to explore the toolbox around random
matrices, including going into discrete models like dimers and statistical me-
chanics. Some of this will be included in the lectures, and some other topics
will be covered in the reading course component, which is individualized.

Applications. Random matrix theory finds applications across a diverse
set of fields. In nuclear physics, random matrix ensembles serve as mod-
els for complex quantum Hamiltonians, thereby explaining the statistics of
energy levels. In number theory, connections have been drawn between ran-
dom matrices and the Riemann zeta function, particularly concerning the
distribution of zeros on the critical line. Wireless communications benefit
from random matrix theory through the analysis of eigenvalue distributions,
which helps in understanding channel capacity in multi-antenna (MIMO)
systems. In the burgeoning field of machine learning, random weight matri-
ces and their spectra are key to analyzing neural networks and their general-
ization capabilities. High-dimensional statistics and econometrics also draw
on random matrix tools for tasks such as principal component analysis and
covariance estimation in large datasets. Additionally, combinatorial random
processes exhibit connections to random permutations, random graphs, and
partition theory, all through the lens of matrix integrals.

1.2 Recall Central Limit Theorem

1.2.1 Central Limit Theorem and examples

We begin by establishing the necessary groundwork for understanding and
proving the Central Limit Theorem. The theorem’s power lies in its remark-
able universality: it applies to a wide variety of probability distributions
under mild conditions.
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Definition 1.1. A sequence of random variables {X;}°; is said to be in-
dependent and identically distributed (iid) if:

e Each X; has the same probability distribution as every other X;, for
all 4, 5.

e The variables are mutually independent, meaning that for any finite
subset { X1, Xo,..., X, }, the joint distribution factors as the product
of the individual distributions:

]P)(Xl <z, Xo<xg,..., Xy < xn) = P(Xl < xl)]P)(XQ < x2) e ]P)(Xn < xn)

Theorem 1.2 (Classical Central Limit Theorem). Let {X;}:°; be a sequence

of iid random variables with finite mean p = E[X;] and finite variance o =

Var(X;). Define the normalized sum

1 &

Then, as n — 0o, the distribution of Z,, converges in distribution to a normal
random variable with mean 0 and variance o2, i.e.,

Zn 5 N(0,02).

Convergence in distribution means

z 1 _ 2
lim P(Z, <z)=P(Z <x)= / e 202 dt for all z € R,
n—oo 00 27[-02
(1.2)

where Z ~ N(0,0?) is the Gaussian random variable.

Remark 1.3. For a general random variable instead of Z ~ N(0, ¢?), the
convergence in distribution (1.2) holds only for x at which the cumulative
distribution function of Z is continuous. Since the normal distribution is
absolutely continuous (has density), the convergence holds for all x.

Example 1.4. Let {X;}°, be a sequence of iid Bernoulli random variables
with parameter p, meaning that each X; takes the value 1 with probability
p and 0 with probability 1 —p. The mean and variance of each X; are given
by:

p=E[X;]=p, o=Var(X;)=p(l—p).
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Figure 1.1: Densities of Uy, Uy 4+ Us, Uy 4+ Uz + Us (where U; are iid uniform
on [0,1]), and N(0,1), normalized to have the same mean and variance.

We also have the distribution of X7 + --- + X,,:
P(Xi+--+X,=k) = (

Introduce the normalized quantity

k —
PR " (1.3)

Vnp(l —p)
and assume that throughout the asymptotic analysis, this quantity stays
finite.

Our aim is to show that, for k£ such that z remains bounded as n — oo,
the following holds:

1 22
P(S, = k) = mexp<—2>(1 +o(1)).

For large n, Stirling’s formula gives
m! ~V2rmm™e™™,  as m — .
Apply Stirling’s approximation to n!, k!, and (n — k)!:
n! ~V2mnnte™, Kl ~V2rk ke TR (n—k)! ~ /21(n — k) (n—k)" ke~ (7R,
Thus,
V2mnne " n" 1

<k> "~ Vank kke—h 2m(n — k) (n — k)n—ke=(n=k) — kF(n — k)"=k\ /ork(n — k)/n’
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More precisely, one often writes

<Z> ~ 27m;(1_p)exp<nlnn —klnk — (n—k)In(n — k:)),

where p ~ k/n thanks to the fact that z (1.3) is assumed to be finite.

‘We have
k=np—+ zy/np(1l —p).

Then, consider the second-order Taylor expansion. We have

2

nlnn —klnk — (n—k)In(n — k) ~nH — %,

where H = —[plnp + (1 — p)In(1 — p)] + ¢(z;p)/+/n (for an explicit func-
tion ¢(z;p)) is the “entropy” term which exactly cancels with the prefactors
coming from pk(1 — p)"~F.

After combining the approximations from the binomial coefficient and
the probability weights, one arrives at

as desired.
(Note that this is a local CLT as opposed to the convergence (1.2) in the
classical CLT; but one can get the latter from the local CLT by integration.)

1.2.2 Moments of the normal distribution

Proposition 1.5. The moments of a random variable Z ~ N(0,02) are
given by:

E[zH = ¥ ks odd, )
ok -1 =0k (k—1)(k—3)---1, ifk is even.

Proof. We just compute the integrals. Assume k is even (for odd, the integral
is zero by symmetry). Also assume o = 1 for simplicity. Then

1 [e.e]
E[ZF) = \/ﬂ/ ZFe 12 4z,

Applying integration by parts (putting ze=2"/2 under d), we get

E[Z*] = L —zkilefzz/zro k1 k2722 g,

_l’_ -
V2T —00 V2T J
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The first term vanishes at infinity (you can verify this using L’Hopital’s
rule), leaving us with:

E[Z*] = (k — 1) E[ZF72].

This gives us a recursive formula, and completes the proof. ]

1.2.3 Moments of sums of iid random variables

Let us now show the CLT by moments. For example, the source is [Bil95,
Section 30] or [Fill0].

Remark 1.6. This proof requires an additional assumption that all mo-
ments of the random variables are finite. This is quite a strong assumption,
and while the CLT holds without it, this proof by moments is more algebraic,
and will translate to random matrices more directly.

Computation of moments

Denote Y; = X; — u, these are also iid, but have mean 0. We consider

(&)

Expanding the k-th power using the multinomial theorem, we obtain:

n k
(Zn>= Y VY, Y,
=1

Jitjet+-+ijn=k

Taking the expectation and using linearity, we have:

n k
=1

Ji+je+-+in=k

The sum over all ji,...,Jj, with j; + ...+ j, = k is the number of ways to
partition k£ into n non-negative integers. We can order these integers, and
thus obtain the sum over all partitions of k into < n parts. Since n is large,
we simply sum over all partitions of k. For each partition A of k (where
E=XA4+X+...+ A, and Ay > Ay > ... >\, > 0), we must count the
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number of distinct multisets of indices (j1, j2,...,Jn) that yield the same
collection {A1, Az, ...}. Then,

EY;Y,...Y;]=mymy...my,

where m; = E[Y] (recall the identical distribution of ¥;). Note that mg = 1
and m; = 0. Let us illustrate this with an example.

Example 1.7. For k = 4, there are only two partitions which have no parts
equal to 1: A = (4) and A = (2,2). The number of ways to get (4) (so that
E[Y;,Y;,Y},Y;,] = my) is to just assign one of the j, to be 4, this can be done
in n ways.

The number of ways to get (2,2) (so that E[Y;,Y;,Y;,Y;] = m3) is to
assign two of the j, to be 2 and the other two to be 0, this can be done in
(g) ways. Moreover, there are also 6 permutations of the indices j, = (7, j)
which give the same partition (2,2): (4,4,7,7), (4,7,%,%), (4,4,%,7), (4,1, J,1),
(1,7,7,1), (j,?,7,7). Thus, the total number of ways to get (2,2) is 6(3) ~
3n2.

So, we see that there is an n-dependent factor, and a “combinatorial”
factor for each partition.

n-dependent factor

Consider first the n-dependent factor. In the case k is even and \ =
(2,2,...,2), the power of n is n*/2. In the case k is even and X has at
least one part > 3, the power of n is at most n*/2~1 which is subleading
in the limit n — co. When k is odd, the “best” we can do (without parts
equal to 1) is going to be A = (3,2,...,2) with (k—1)/2 parts, so the power
of n is n*=1/2_ This is also subleading in the limit n — co.

Combinatorial factor

Now, we see that we only need to consider the case when k is even and all
parts of A are 2. Then, the n-dependent factor is (k72) ~ n*/2/(k/2)!. The
combinatorial factor is equal to the number of ways to partition k into pairs,
which is the double factorial:

(k-1 =(k-1)(k—-3)...1,

times the number of permutations of the k/2 indices which are assigned to
the pairs, so (k/2)!. In particular, for k = 4 this is 6.
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Putting it all together

We have as n — oo:

k
- k-1
E (; YZ> = nk/z((km)!(k:/Q)!ngro(nk/z) = nF2(k—1)llo" +o(n/2).

Now, we need to consider the normalization of the sum Y., Y; by /n:

" k " k
1 1

Therefore, the moments of Z,, (1.1) converge to the moments of the standard
normal distribution.

1.2.4 Convergence in distribution

Is convergence of moments enough to imply convergence in distribution?
Not necessarily. First, note that the functions = — z* are not even bounded
on R.

A sufficient condition for convergence in distribution is found in the clas-
sical method of moments in probability theory [Bil95, Theorem 30.2]. This
theorem states that if the limiting distribution X is uniquely determined by
its moments, then convergence in moments implies convergence in distribu-
tion.

The normal distribution is indeed uniquely determined by its moments
(Problem 1.4.5), so the CLT holds in this case, provided that the original
iid random variables X; have finite moments of all orders.

1.3 Random matrices and semicircle law

We now turn to random matrices.

1.3.1 Where can randomness in a matrix come from?

The study of random matrices begins with understanding how random-
ness can be introduced into matrix structures. We consider three primary
sources:
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1. iid entries: The simplest form of randomness comes from filling ma-
trix entries independently with samples from a fixed probability dis-
tribution. For an n x n matrix, this gives us n? independent random
variables. If we do not impose any additional structure on the matrix,
then the eigenvalues will be complex. So, often we consider real sym-
metric, complex Hermitian, or quaternionic matrices with symplectic
symmetry.1

2. Correlated entries: In many physical systems, especially those mod-
eling local interactions, matrix entries are not independent but show
correlation patterns. Common examples include:

e Band matrices, where entries become negligible far from the di-
agonal

e Matrices with correlation decay based on the distance between
indices

e Structured random matrices arising from specific physical models

e Sparse matrices, where most entries are zero

3. Haar measure on matrix groups: Randomness can come from con-
sidering matrices sampled according to the Haar measure on a com-
pact matrix group, for example, the orthogonal O(n), unitary U(n),
or symplectic group Sp(n).2 One can think of this as a generalization
of the uniform distribution (Lebesgue measure) on the unit circle in
C, or a unit sphere in R™. One can also mix and match: one of the
most interesting families of random matrices is the one with constant
eigenvalues, but random eigenvectors:

A=UD\U', ~ UeU(n), U~ Haar.

'Real symmetric means AT = A, complex Hermitian means A" = A (conjugate trans-
pose). Let us briefly discuss the quaternionic case. It can be modeled over C. A quaternion
q=a+bi+cj+ dk can be represented by the complex 2 X 2 matrix

. a+ib c+id
q —c+id a—ib)"

The entries a, b, ¢, d for the quaternion matrix case must be real, and the matrix A of size
2n x 2n should also be Hermitian in the usual complex sense.

2The orthogonal and unitary groups are defined in the usual way, by OOT =0TO =T
and UUT = U'U =1, respectively. The group Sp(n) is the compact real form of the full
symplectic group Sp(2n, C), consisting of 2n X 2n matrices A such that ATJA = J, where
J is the skew-symmetric form.
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Here D) is a diagonal matrix with constant eigenvalues A = (A1, ..., A,).
The random matrix A is the “uniform” random variable taking values
in the set of all Hermitian matrices with fixed real eigenvalues A. Here
we may assume that A\; > ... > \,, since the unitary conjugation can
permute the eigenvalues.

1.3.2 Real Wigner matrices

Definition 1.8 (Real Wigner Matrix). An nxn random matrix W = W,, =
(Xij)1<i,j<n is called a real Wigner matriz if:

1. W is symmetric: X;; = Xj; for all 7, j;
2. The upper triangular entries {Xij : 1 <i < j <n} are independent;

3. The diagonal entries {X;;} are iid real random variables with mean 0
and variance oy;

4. The upper triangular entries {X;; : ¢ < j} are iid (possibly with a
distribution different from the diagonal entries) real random variables
with mean 0 and variance o;

5. (optional, but we assume this) All entries have finite moments of all
orders.

Example 1.9 (Gaussian Wigner Matrices, Gaussian Orthogonal Ensemble
(GOE)). Let W be a real Wigner matrix where:

e Diagonal entries X;; ~ N(0,2);
e Upper triangular entries X;; ~ N(0,1) for ¢ < j.

We can model W as (Y 4+ Y T)/v/2, where Y is a matrix with iid Gaussian
entries Yj; ~ N(0,1). The matrix distribution of W is called the Gaussian
Orthogonal Ensemble (GOE).

Remark 1.10 (Wishart Matrices). There are other ways to define random
matrices, most notably, sample covariance matrices. Let A = [a”]f;zl be
an n X m matrix (n < m), where entries are iid real random variables with
mean 0 and finite variance. Then M = AAT is a positive symmetric random

matrix of size n x n. It almost surely has full rank.
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1.3.3 Empirical spectral distribution

For an arbitrary random matrix of size n x n with real eigenvalues, the
empirical spectral distribution (ESD) is defined as the random probability

measure on R:
1 n
= = O s 1.5
n= ;:1 i (1.5)

which puts point masses of size 1/n at the eigenvalues \; of the matrix.

If you sample the ESD for a large real Wigner matrix, and take a his-
togram (to cluster the eigenvalues into boxes), you will see the semi-circular
pattern. This pattern does not change over several samples. Hence, one
can conjecture that the ESD (1.5) converges to a nonrandom measure, after
rescaling.

We can guess the rescaling by looking at the first two moments of the
ESD. The first moment is

/xun (dz) Z)\ = Tr ):iiXii, (1.6)
R i=1

and this sum has mean zero (and small variance), so it converges to zero.
The second moment is

/a: pn (d) Z)\2 —Tr (W?) = Z X (1.7)
R

,Jl

This sum has mean ~ 0?n?, so even normalized by n, it still goes to infinity.

But, if we normalize the matrix as ﬁw, then the second moment becomes
bounded, and one can convince oneself that the ESD of the normalized
Wishart matrix has a limit. Indeed, this is the case:

Theorem 1.11 (Wigner’s Semicircle Law). Let W be a real Wigner matriz
of size n x n (with off-diagonal entries having a fived variance o2, indepen-
dent of n). Then as n — oo, the ESD of W/(o+/n) converges in distribution
to the semicircular law:

1 n
= - ;awﬁ — flge, (1.8)

where pge 15 the semicircular distribution with densily with respect to the
Lebesgue measure:

pse(dx) \/ — 2?1y <o dz. (1.9)



CHAPTER 1. MOMENTS OF RANDOM VARIABLES AND RANDOM MATRICES22

Remark 1.12. The convergence in (1.8) may mean either weakly in proba-
bility or weakly almost surely. The first notion, weak convergence in proba-
bility, means that for every bounded continuous function f, we have

jf (@) vn(dz) —s ]f F@) ne(dn),  n— oo, (1.10)
R R

where in (1.10) the convergence is in probability. Indeed, the left-hand
side of (1.10) is a random variable, so we need to qualify which sense of
convergence we mean.

The weakly almost sure convergence means that the convergence in
(1.10) holds for almost all realizations of the random matrix W, that is, for
every bounded continuous function f, the random variable [, f(x) v, (dx)
converges almost surely to [p f(2) pisc(dx).

Remark 1.13. There exists a version of the limiting ESD for the Wishart
matrices (Remark 1.10). In this case, the limiting distribution is the Marchenko-
Pastur law [MP67].

1.3.4 Expected moments of traces of random matrices

The main computation in the proof of Theorem 1.11 is the computation of
expected moments of the ESD. This computation of moments is somewhat
similar to the one in the proof of the CLT by moments, but has its own
random matrix flavor.

Definition 1.14 (Normalized Moments). For each k£ > 1, the normalized
k-th moment of the empirical spectral distribution of W, /\/n is given by

n 1
m]i ) = /R:Ek vp(dx) = pYYEEEY Te(WH).

Our first goal is to study the asymptotic behavior of E[m,&n)] as n — 0o

for each fixed k > 1, just like we did in (1.6)—(1.7) for k = 1, 2:
Em{™ =0,  E[m{"] - o>

Note that E[m;n)] is not exactly equal to o2 because of the presence of the
diagonal elements which have a different distribution. In general, we will see
that the contribution of the diagonal elements to the moments is negligible
in the limit n — oo.
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Lemma 1.15 (Convergence of Expected Moments). For each fived k > 1,

we have
n 0 if k is odd,
lim E[m; )] =9 . Zf Z'S 0
n—00 0"Cysa if k 1s even,
where Cyy, = #H(Qx) s the m-th Catalan number.

The even moments are scaled by powers of o just as in the case k = 2,
while the odd moments vanish due to the symmetry of the limiting distri-
bution around zero. As we will see, the appearance of Catalan numbers is
not accidental, but it is due to the underlying combinatorics.

Proof of Lemma 1.15. The trace of W* expands as a sum over all possible
index sequences:

n
Tr(Wk) = Z Xiyig Xinig *++ Xig_ iy Xy - (1.11)

i1 ip=1

Due to independence and the fact that E[X;;] = 0 for all 4,7, the only
nonzero contributions come from index sequences where each matrix element
appears least twice.

Asin the CLT proof, there is a power-n factor and a combinatorial factor.

For k£ odd, let us count the power of n first. As in the CLT proof,
the maximum power comes from index sequences where all matrix elements
appear exactly twice except for one which appears three times. Indeed, this
corresponds to the maximum freedom of choosing k indices among the large
number n of indices, and thus to the maximum power of n. This maximum
power of n is nttk/2] (note that there is an extra factor n compared to the
CLT proof, as now we have ~ n? random variables in the matrix instead
of n). Since this is strictly less than the normalization n*/?*1 in m](gn), the
term with odd k vanish in the limit n — oc.

Assume now that k is even. Then the maximum power of n comes from
index sequences where each matrix element appears exactly twice. This
power of n is n¥/2t1 which exactly matches the normalization in m,(g”).

It remains to count the combinatorial factor, assuming that k is even.
For each term in the trace expansion, we can represent the sequence of
indices (iy,...,ix) as a directed closed path with vertices {1,...,n} and
edges given by the matrix entries X; ;,,,. For example, if k = 4 and we have
a term X12X93X34X41, this corresponds to the path 1 -2 —-3 — 4 — 1.
Recall that our path must have each matrix entry exactly twice (within the
symmetry X;; = Xj;), and the path must be closed. The condition that
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each edge appears exactly twice means that if we forget the direction of
the edges and the multiplicities, we must get a tree, with k/2 edges and
k/2 + 1 vertices. The complete justification of this counting is the problem
in Problem 1.4.9.

The n-powers counting implies that the combinatorial factor (for even k)
is equal to o® times the number of rooted (planar) trees with k/2 edges. The
rooted condition comes from the fact that we are free to fix the starting point
of the path to be 1 (this ambiguity is taken into account by the power-n
factor).

In Problem 1.4.10, we show that the number of these rooted trees is the
k/2-th Catalan number Cj, 5. This completes the proof of Lemma 1.15. [

1.3.5 Immediate next steps

The proof of Theorem 1.11 is continued in the next Chapter 2. Immediate
next steps are:

1. Show that the number of rooted trees with k/2 edges is the k/2-th
Catalan number, and give the exact formula for the Catalan numbers.

2. Compute the moments of the semicircular distribution.

3. Make sure that the moment computation suffice to show the weak in
probability convergence of the ESD to the semicircular law.

1.4 Problems

Each problem is a subsection (like Problem 1.4.1), and may have several
parts.

1.4.1 Normal approximation

1. In Figure 1.1, which color is the normal curve and which is the sum of
three uniform random variables?

2. Show that the sum of 12 iid uniform random variables on [—1, 1] (with-
out normalization) is approximately standard normal.

3. Find (numerically is okay) the maximum discrepancy between the dis-
tribution of the sum of 12 iid uniform random variables on [—1, 1] and
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the standard normal distribution:

1.4.2 Convergence in distribution

Convergence in distribution X,, — X for real random variables X,, and X
means, by definition, that

E[f(Xn)] = E[f(X)]

for all bounded continuous functions f. Show that convergence in distribu-
tion is equivalent to the condition outlined in (1.2):

lim P(X, <z)=P(X <)

n—oo

for all  at which the cumulative distribution function of X is continuous.

1.4.3 Moments of sum justification

Justify the computations of the power of n in Section 1.2.3.

1.4.4 Distribution not determined by moments

Show that the log-normal random variable e (where Z ~ A(0,1)) is not
determined by its moments.

1.4.5 Uniqueness of the normal distribution

Show that the normal distribution is uniquely determined by its moments.

1.4.6 Quaternions

Show that the 2 x 2 matrix representation of a quaternion given in Footnote 1
indeed satisfies the quaternion multiplication rules. Hint: Use linearity and
distributive law.
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1.4.7 Ensemble UD,U"t

Let U be the random Haar-distributed unitary matrix of size N x N. Let
D), be the diagonal matrix with constant real eigenvalues A = (A1,...,An),
A1 > ... > Ay. Let us fix A to be, say, A = (1,1,...,1,0,0,...,0), for some
proportion of 1’s and 0’s (you can start with half ones and half zeros).

Use a computer algebra system to sample the eigenvalues of the matrix

obtained from UD,U" by taking only its top-left corner of size k x k, where

k=1,2,...,N. For a fixed k, let )\gk) >...> )\,(f) be the eigenvalues of the

top-left corner of size k x k. Plot the two-dimensional array

{OW B)ri=1, kb =1, N} CRx Zs1.

1.4.8 Invariance of the GOE

Show that the distribution of the GOE is invariant under conjugation by
orthogonal matrices:

P(OWOT € A) =P(W € A)

for all orthogonal matrices O and Borel sets A.

1.4.9 Counting n-powers in the real Wigner matrix

Show that in the expansion of the expected trace of the k-th power of the
real Wigner matrix, the maximum power of n is k/2 + 1 for even k and less
for odd k. For even k, the power k/2 + 1 comes from index sequences where
each off-diagonal matrix element appears exactly twice, and no diagonal
elements are present.

1.4.10 Counting trees

Show that the number of rooted trees with m edges is the m-th Catalan

number: ) )
m
Cp=— .
" m+1<m)



Chapter 2

Wigner semicircle law

2.1 Recap

We are working on the Wigner semicircle law.

1. Wigner matrices W: real symmetric random matrices with iid entries
Xij, i > j (mean 0, variance 0?); and iid diagonal entries X;; (mean
0, some other variance and distribution).

2. Empirical spectral distribution (ESD)

n

1
V== Oy

i=1
which is a random probability measure on R.

3. Semicircle distribution pg:
1

psc(dz) = 2—\/4 — 2% dx, x € [-2,2].
T

4. Computation of expected traces of powers of W (with variance 1). We
showed that

/ 2* v, (dx) — # {rooted planar trees with k/2 edges} .
R

Remark 2.1. If the off-diagonal elements of the matrix have variance
0?2, then the semicircle distribution should be scaled to be supported on
[—20,20]. We assume that the variance of the off-diagonal elements is 1 in
most arguments throughout the lecture.

27
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2.2 Two computations

First, we finish the combinatorial part, and match the limiting expected
traces of powers of W to moments of the semicircle law.

2.2.1 Moments of the semicircle law

We also need to match the Catalan numbers to the moments of the semicircle
law. Let k = 2m, and we need to compute the integral

2
/ x2m2i\/4 — z2dx.
T

-2

By symmetry, we write:

2 9 2
/ ¥ p(z) dx = / ¥4 — 22 dx.
0

) ™

Using the substitution z = 2sin 6, we have dr = 2cosf df. The integral
becomes:

9 22m+2

w/2
/ (25in0)?™(2 cos 0)(2cos 0 db) =
0

™

w/2
/ sin?™ 6 cos® 6 do.
0

s

Using cos? f = 1 — sin? 6, we split the integral:

2m-+2 w/2 /2
2 < / sin®™ 0 dh — / sin®™t2 ¢ d9> .
™ 0 0

Using the standard formula (cf. Problem 2.6.1)

" g gp = T 20! (2.1)
0 - 222n(p))2’ ‘

we compute each term:

2242 (o (am)l 1 (2m+2)!
(G~ 357 2

™

After simplification, this becomes C,,, the m-th Catalan number.
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2.2.2 Counting trees and Catalan numbers

Throughout this section, for a random matrix trace moment of order k, we
use m = k/2 as our main parameter. Note that m can be arbitrary (not
necessarily even).

Definition 2.2 (Dyck Path). A Dyck path of semilength m is a sequence
of 2m steps in the plane, each step being either (1,1) (up step) or (1,—1)
(down step), starting at (0,0) and ending at (2m,0), such that the path
never goes below the z-axis. We denote an up step by U and a down step
by D.

Definition 2.3 (Rooted Plane Tree). A rooted plane tree is a tree with a
designated root vertex where the children of each vertex have a fixed left-to-
right ordering. The size of such a tree is measured by its number of edges,
which we denote by m.

Definition 2.4 (Catalan Numbers). The sequence of Catalan numbers {Cp, }m>0
is defined recursively by:
m
Co=1, Cmi1=)» CjCpj form>0. (2.2)
§=0

Alternatively, they have the closed form!

1 2m 2m 2m
Cpn=—— = - . 2.3
w=ari(n) = () =Gt} e
These numbers appear naturally in the moments of random matrices, where
m = k/2 for trace moments of order k.

Lemma 2.5. Formulas (2.2) and (2.3) are equivalent.

Proof. One can check that the closed form satisfies the recurrence relation
by direct substitution. The other direction involves generating functions.
Namely, (2.2) can be rewritten for the generating function

C(z) = Z Crpz™
m=0

C(2) = 1+ 20(2)*.

!See Problem 2.6.4 for a combinatorial proof of the second inequality.
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Solving for C(z), we get

C(z) = 1EVI 42 ;_42 (2.4)

We need to pick the solution which is nonsingular at z = 0, and it corre-
sponds to the minus sign. Taylor expansion of the right-hand side of (2.4)
at z = 0 gives the closed form. O

Remark 2.6. Catalan numbers enumerate many (too many!) combinatorial
objects. For a comprehensive treatment, see [Stal5].

Proposition 2.7 (Dyck Path-Rooted Tree Correspondence). For any m,
there exists a bijection between the set of Dyck paths of semilength m and
the set of rooted plane trees with m edges.

Proof. Given a Dyck path of semilength m, we build the corresponding
rooted plane tree as follows (see Figure 2.1 for an illustration):

1. Start with a single root vertex
2. Read the Dyck path from left to right:

e For each up step (U), add a new child to the current vertex

e For each down step (D), move back to the parent of the current
vertex

3. The order of children is determined by the order of up steps

This is clearly a bijection, and we are done. O

It remains to show that the Dyck paths or rooted plane trees are counted
by the Catalan numbers, by verifying the recursion (2.2) for them. By
Proposition 2.7, it suffices to consider only Dyck paths.

Proposition 2.8. The number of Dyck paths of semilength m satisfies the
Catalan recurrence (2.2).

Proof. We need to show that the number of Dyck paths of semilength m + 1
is given by the sum in the right-hand side of (2.2). Consider a Dyck path of
semilength m + 1, and let the first time it returns to zero be at semilength
j+ 1, where 7 = 0,...,m. Then the first and the (25 + 1)-st steps are,
respectively, U and D. From 0 to 2j + 2, the path does not return to the
x-axis, so we can remove the first and the (254 1)-st steps, and get a proper
Dyck path of semilength j. The remainder of the Dyck path is a Dyck path
of semilength m — j. This yields the desired recurrence. O
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VAN

UuDD UDUD

Figure 2.1: The two possible Dyck paths of semilength m = 2 and their
corresponding rooted plane trees.

Figure 2.2: Illustration of a Dyck path decomposition for the proof of Propo-
sition 2.8.
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2.3 Analysis steps in the proof

We are done with combinatorics, and it remains to justify that the compu-
tations lead to the desired semicircle law from Chapter 1.
Let us remember that so far, we showed that

1 a?mC if Kk =2m is even
lim o B Tewh| = " !
n—oo pk/2+1 {O if k is odd.

Here, W is real Wigner (unnormalized) with mean 0, where its off-diagonal

entries are iid with variance o2.

2.3.1 The semicircle distribution is determined by its mo-
ments

We use (without proof) the known Carleman’s criterion for the uniqueness
of a distribution by its moments.

Proposition 2.9 (Carleman’s criterion [ST43, Theorem 1.10], [Akh65]).
Let X be a real-valued random variable with moments my, = E[X*] of all
orders. If

> (mag) TR = o0, (2.5)
k=1

then the distribution of X is uniquely determined by its moments (my),>1.

Remark 2.10. Note that we do not assume that the measure is symmetric,
but use only even moments for the Carleman criterion. Indeed, in determin-
ing uniqueness, the decisive aspect is how the distribution mass “escapes”
to +00. Since [ |z|"du(z) can be bounded by twice [ x2l"/2ldu(z) (roughly
speaking), controlling [ 2?"du(x) also controls [ |z|"du(x). Thus, one does
not need to worry about positive or negative signs in x; the even powers
handle both sides of the real line at once.

Moreover, the convergence of (2.5), as for any infinite series, is only
determined by arbitrarily large moments, for the same reason.

Remark 2.11. By the Stone-Wierstrass theorem, the semicircle distribu-
tion on [—2,2] is unique among distributions with an arbitrary, but fixed
compact support with the moments ¢2*C},. However, we need to guarantee
that there are no distributions on R with the same moments.
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Now, the moments satisfy the asymptotics

4k
2%k 2%
O R
50 1/2k
oo (9] 3/2
S (ma) V) 3 </<? f) -
k=1 =1

The k-th summands converges to 1/(20), so the series diverges.

Remark 2.12. See also Problem A.4 from Chapter 1 on an example of a
distribution not determined by its moments.

2.3.2 Convergence to the semicircle law

Recall [Bil95, Theorem 30.2] that convergence of random variables in mo-
ments plus the fact that the limiting distribution is uniquely determined by
its moments implies convergence in distribution. However, we need weak
convergence in probability or almost surely (see the previous Chapter 1).
which deals with random variables

/Rf(a;) vp(dx), f € Cp(R),

and we did not compute the moments of these random variables.

To complete the argument, let us show that for each fixed integer k > 1,
we have almost sure convergence of the moments (of a random distribution,
so that the Y), ;,’s are random variables):

Y, = [ oF vp(dr) 22 my, n — 00,
’ R n—+00

where my, are the moments of the semicircle distribution, and v, is the ESD
corresponding to the scaling of the eigenvalues as \;/\/n.
As typical in asymptotic probability, we not only need the expectation of
Y, k, but also their variances, to control the almost sure convergence. Recall
that we showed E(Y}, x) — mj. Let us assume the following:

Proposition 2.13 (Variance bound). For each fized integer k > 1 and large
enough n, we have
my,

Var(Yy, ;) < —.
ar(Yn i) < .

We will prove Proposition 2.13 in Section 2.4 below. Let us finish the
proof of convergence to the semicircle law modulo Proposition 2.13.
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A concentration bound and the Borel-Cantelli lemma

From Chebyshev’s inequality,
P(| Yok — El¥usl| 2 n7¥) < Varl¥xlvin = O(n ),

where in the last step we used Proposition 2.13.

Hence the probability that |Y;,  — E[Y}, ]| > n~1 is summable in n. By
the Borel-Cantelli lemma, with probability 1 only finitely many of these
events occur. Since E[Y}, ;] — my, we conclude

Yok —mi| < |[Yar —EYns]| + |E[Yak] — me] —— 0 almost surely.

n—o0

Tightness of {v,} and subsequential limits

Since |Y, x| = ‘ [ zk l/n(dx)‘ stays almost surely bounded for each k, one
readily checks (Problem 2.6.5) that almost surely, for each fixed k,

C

vo({z ¢ |z| > M}) < ik

(2.6)
Here, C' may depend on k, but its growth is at most exponential in k£ due
to the Catalan number moments. By choosing k large, we see that v, puts
arbitrarily little mass outside any interval [—M, M| for sufficiently large M.
Thus, the sequence of probability measures {v,,} is tight. By Prokhorov’s
theorem [Bil95, Theorem 25.10], there exists a subsequence v, converg-
ing weakly to some probability measure v*. We will now characterize all
subsequential limits v* of v,.

Characterizing the limit measure

We claim that v* = pugc, the semicircle distribution (and in particular, this
measure is not random). Indeed, fix k. Since z* is a bounded function on a
sufficiently large interval, and v,,; — v* weakly, we have

/R vy (dr) - /R 0 (da).

On the other hand, we have already shown

—00

/ka Un,(dz) = Yo,k Ja—s>mk = /Rl‘k,usc(d:r).
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Thus

2* v (dr) = my, = / 2* prge (dz) for all £ > 1.

R R

By Proposition 2.9, the measure v* is uniquely determined by its moments.
Hence v* must coincide with pgc.

Remark 2.14. In Section 2.3.2 and ?? we tacitly assumed that we choose
an elementary outcome w, and view v, as measures depending on w. Then,
since the convergence of moments is almost sure, w belongs to a set of full
probability. The limiting measure v* must coincide with ug. for this w, and
thus, v* is almost surely nonrandom.

Any subsequence of {v,} has a further sub-subsequence convergent to v.
By a standard diagonal argument, this forces v, — v in the weak topology
(almost surely). This completes the proof that the ESD of our Wigner
matrix (rescaled by y/n) converges to the semicircle distribution weakly
almost surely, modulo Proposition 2.13. (See also Problem 2.6.6 for the
weakly in probability convergence.)

2.4 Proof of Proposition 2.13: bounding the vari-
ance

There is one more “combinatorial” step in the proof of the semicircle law:
we need to show that the variance of the moments of the ESD is bounded
by my/n?.

Recall that

1 n
Yn,k = / xk l/n(d.f(}) = 1+E Z X], Where X[ = Xi1i2Xi2i3 e szzl
R N2 gy ie=1
Here we use the notation I for the multi-index (i1, ...,i), and throughout
the computation below, we use the notation I € [n]*, where [n] = {1,...,n}.
We have
1 1
Var(YnJg) = WV&I‘( Z X[) = W Z COV(X],XJ).
I€[n]k I,J€n]*

We claim that the sum of all covariances is bounded by a constant times n*,

which then implies Var (Y, ) < const - n*/n?*™F = O(%).

n
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Step 1. Identifying when Cov(XI,XJ) can be nonzero. For each
k-tuple I = (1,42, ..,4;) € [n]¥, the product

X1 = Xiyiy Xigig - Xigi

is the product of the entries of our Wigner matrix corresponding to the
directed “edges” (i; — 1i2), (i2 — i3),..., (ix — i1). Similarly, X is deter-
mined by the edges of another closed directed walk J.

1. If I and J use disjoint collections of matrix entries, then X; and X
are independent, and hence Cov(X7, X ;) = 0.

2. If there is an edge (say, Xj,:,) which appears only once in exactly one
of I or J but not both, then that edge factor is independent and forces
Cov(Xr,X ;) = 0 since E[Xj,;,] = 0. Indeed, for example if Xj i,
appears only in Xj, then

E [X;] = E[X;,;,)E [other factors] =0,  E[X;X;]| = E[X;,;,]E [other factors] = 0.

Thus, the only way we could get a nonzero covariance is if every edge that
appears in I U J appears at least twice overall. Graphically, let us represent
each k-tuple I by a directed closed walk in the complete graph on [n]. The
union I U J must be a connected subgraph in which every directed edge has
total multiplicity > 2.

Step 2. Counting the contributions to the sum. Denote by ¢ =
|[V(I' U J)| the number of distinct vertices involved in the union I U J. In
principle, there are O(n?) ways to choose g vertices from [n]. Then we need
to specify how the edges form two closed walks of length k.

We split into two cases:

1. ¢ < k. Then the n-power in the sum over I,J is at most n*, which
yields the overall contribution O(n~2), as desired.

2. @ > k + 1. Ignoring directions and multiplicities, we see that the sub-
graph corresponding to I U.J contains at most k edges. Since ¢ > k+1,
we must have ¢ = kK + 1 (by connectedness). Thus, I U J is a double
tree. Since I and J are subsets of this double tree and ¢ = k + 1, they
also must be double trees. Thus, there exists an edge which appears
in both I and J, and at least twice in I and twice in J, so four times
in I UJ. This contradicts the assumption that I U J is a double tree.

This implies that there are no leading contributions to the sum when
q>k+1.
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Combining these two cases, we conclude that the total number of pairs
(I,.J) with nonzero covariance is of order at most n*, This yields the desired
bound on the variance, and completes the proof of Proposition 2.13.

With that, we are done with the Wigner semicircle law proof for real
Wigner matrices (with weakly almost sure convergence; see Chapter 1 for
the definitions).

Also, see Problem 2.6.7 for the complex case of the Wigner semicircle
law.

2.5 Remark: Variants of the semicircle law

Let us briefly outline a few examples of the semicircle law for real/complex
Wigner matrices which relax the iid conditions and the conditions that all
moments of the entries must be finite. This list is not comprehensive, it is
presented as an illustration of the universality / robustness of the semicircle
law.

Theorem 2.15 (Gaussian S-Ensembles [Joh98], [Forl0]). Let > 0, and
consider an n X n random matriz ensemble with joint eigenvalue density:

1 B 2 B
pn(Al,...,An):ZWexp<—4 AZ») I =l (2.7)

i=1 1<i<j<n

where Z,, g is the normalization constant.> Then the ESD of the normalized
eigenvalues \;/\/n converges weakly almost surely to the semicircle law.

Theorem 2.16 (Correlated entries [SSB05]). Let W), = (\%qu>
" 1<p,q<n

be a sequence of n X n Hermitian random matrices where:

1. The entries Xp, are complex random variables that are:

e Centered: E[Xp,] =0,
e Unit variance: E[| X% = 1,

e Moment bound: sup max E [|qu\k] < oo for all k € N.
n Pg=l...n

2For B = 1,2, 4, this is the joint eigenvalue density of the Gaussian Orthogonal, Unitary,
and Symplectic Ensembles, respectively. For general 3, there is no invariant random
matrix distribution (while the eigenvalue density (2.7) makes sense), and we can still treat
all the § cases in a unified manner.
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2. There exists an equivalence relation ~y, on pairs of indices (p,q) in
{1,...,n}? such that:

o Entries Xp gy, -, Xp,q; are independent when (p1,q1), - - -, (pj, q;)
belong to distinct equivalence classes.

o The relation satisfies the following bounds:
(a) max, #{(¢.9,¢') € {1,...,n}* | (p,q) ~n (¥, ¢)} = o(n?),

(b) maxy g #{d € (1,0} | (0.q) ~n (@)} < B for some
constant B,

(c) #({g;,q,p’) € {Ll,...,n}3 | (0,q) ~n (q,p') andp # p'} =

3. The matrices are Hermitian: X,q = Xgp. In particular, (p,q) ~n
(¢,p), and this is consistent with the conditions on the equivalence
relation.

Then, as n — oo, the ESD of W,, converges to the semicircle law.

There are variants of this theorem without the assumption that all mo-
ments of the entries are finite.

Theorem 2.17 ([BGK16]). Let My, = [X;;]}';_; be a symmetric nxn matriz
with random entries such that:

o The off-diagonal elements X;;, for i < j, are i.i.d. random variables
with E[Xw] =0 and E[XZQJ] =1.

e The diagonal elements X;; are i.i.d. random variables with E[X;] =0
and a finite second moment, E[X2] < oo, for 1 <i <mn.

Then the ESD of M,,, normalized by \/n, converges to the semicircle law.

Theorem 2.18. For eachn € Z4, let M,, = [Xij]ijl be a symmetric n xn
matriz with real random entries satisfying the following conditions:

e The entries X;; are independent (but not necessarily identically dis-
tributed) random variables with E[X;;] = 0 and E[XZQJ] =1.

e There exists a constant C' such that sup, ;,, E [|X4]*] < C.

Then the ESD of M,, normalized by /n, converges to the semicircle law
almost surely. The second condition can also be replaced by a uniform inte-
grability condition on the variances.
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Theorem 2.19 (For example, see [SB95]). Let M, = [X;;|I';_; be a sym-
metric n X n matriz with random entries. Assume that the expected matriz
E[M,] has rank r(n), where

lim r(n)

n—oo N

= 0.
Additionally, suppose E[X;;] =0, Var(X;;) =1, and

supE [\Xij — E[Xij]]ﬂ < 00.

Z7j7n

Then the ESD of M,,, normalized by \/n, converges to the semicircle law
almost surely.

2.6 Problems

2.6.1 Standard formula

Prove formula (2.1):

/2 !
. 9n o (2n)!
/0 sin“" 0df = 522”(71!)2'

2.6.2 Tree profiles

Show that the expected height of a uniformly random Dyck path of semilength
m is of order \/m.

2.6.3 Ballot problem

Suppose candidate A receives p votes and candidate B receives q votes,
where p > ¢ > 0. In how many ways can these votes be counted such that
A is always strictly ahead of B in partial tallies?

2.6.4 Reflection principle

o= ()= (m)

where C,,, counts the number of lattice paths from (0, 0) to (2m, 0) with steps
(1,1) and (1,—1) that never go below the z-axis, and binomial coefficients

Show the equality
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count arbitrary lattice paths from (0,0) to (2m,0) or to (2m,2) with steps
(1,1) and (1,—1). In other words, show that the difference between the
number of paths to (2m,0) and to (2m,2) is C,,, the number of paths that
never go below the z-axis.

2.6.5 Bounding probability in the proof
Show inequality (2.6).

2.6.6 Almost sure convergence and convergence in probabil-
ity

Show that in Wigner’s semicircle law, the weakly almost sure convergence

of random measures v, to us. implies weak convergence in probability.

2.6.7 Wigner’s semicircle law for complex Wigner matrices

Complex Wigner matrices are Hermitian symmetric, with iid complex off-
diagonal entries, and real iid diagonal entries (all mean zero). Each complex
random variable has independent real and imaginary parts.

1. Compute the expected trace of powers of a complex Wigner matrix.

2. Outline the remaining steps in the proof of Wigner’s semicircle law for
complex Wigner matrices.

2.6.8 Semicircle law without the moment condition

Prove Theorem 2.17.



Chapter 3

Gaussian and tridiagonal
matrices

3.1 Recap

We have established the semicircle law for real Wigner random matrices. If
W is an n x n real symmetric matrix with independent entries X;; above the
main diagonal (mean zero, variance 1), and mean zero diagonal entries, then
the empirical spectral distribution of W//n converges to the semicircle law
as n — oo:

NSRS
R 2 Onif/im = Hses (3.1)

where
V4 —2?dx, if |z <2,

0, otherwise.

pisc(dw) = {

The convergence in (3.1) is weakly almost sure. The way we got the result is
by expanding E Tr(W*) and counting trees, plus analytic lemmas which en-
sure that the convergence of expected powers of traces is enough to conclude
the convergence (3.1) of the empirical spectral measures.

Today, we are going to focus on Gaussian ensembles. The plan is:
e Definition and spectral density for real symmetric Gaussian matrices (GOE).

e Other random matrix ensembles with explicit eigenvalue densities: Wishart
(Laguerre) and Jacobi (MANOVA/CCA) ensembles.

e Tridiagonalization and general beta ensemble.

41
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e (next week, not today) Wigner’s semicircle law via tridiagonalization.

3.2 Gaussian ensembles

3.2.1 Definitions

Recall that a real Wigner matrix W can be modeled as

Y+YT
W=——,
V2
where Y is an n X n matrix with independent entries Y;;, 1 <4, < n, such
that Y;; are mean zero, variance 1. Then for 1 <17 < j < n, we have for the
matrix W = (Xj;):

Var (X;;) = Var(vV2Yy) = 2, Var (X;;) = Var (M> =1
V2
If, in addition, we assume that Y;; are standard Gaussian N(0,1), then
the distribution of W is called the Gaussian Orthogonal Ensemble (GOE).
For the complex case, we have the standard compler Gaussian random
variable

1

E(1Z%7) + E(|2"]%)

Z:ﬁ(zmizf), E(Z)=0, Varc(2) =E(Z]*) =

where Z% and Z! are independent standard Gaussian real random variables
N(0,1).

If we take Y to be an n x n matrix with independent entries Y;;, 1 <
i,7 < n distributed as Z, then the random matrix'

2

f
W:Y+Y
V2

is said to have the Gaussian Unitary Ensemble (GUE) distribution. For the
GUE matrix W = (Xj;), we have for 1 <i < j < n:

1
Varc(Xi) =1, Varc(Xyj) =  [B(Z] + 2% + B(Z] + Zﬁ-)?] =1

Both GOE and GUE have real eigenvalues A\; > ... > \,. We are going
to describe the joint distribution of these eigenvalues. Despite the fact that

1yt denotes the transpose of Y combined with complex conjugation.

L
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the map from a matrix to its eigenvalues is quite complicated and nonlinear
(you need to solve an equation of degree n), the distribution of eigenvalues
in the Gaussian cases is fully explicit.

See Problem 3.6.1 for invariance of GOE/GUE under orthogonal /unitary
conjugation (this is where the names “orthogonal” and “unitary” come
from).

Remark 3.1. There is a third player in the game, the Gaussian Symplectic
Ensemble (GSE),which we will mainly ignore in this course due to its less
intuitive quaternionic nature.

3.2.2 Joint eigenvalue distribution for GOE

In this section, we give a derivation of the joint probability density for the
GOE.

Theorem 3.2 (GOE Joint Eigenvalue Density). Let W be an nxn real sym-
metric matriz with the GOE distribution (Section 3.2.1). Then its ordered
real eigenvalues \; < --- < A\, of W//2 have a joint probability density
function on R™ given by:

PO ) = Zi I1 \Ai—Aj\exp(—%ZA@,
k=1

" 1<i<j<n

where Zy, is a constant (depending on n but not on X\;) ensuring the density
integrates to 1:

(2m)"/2 " T(L+ (j + 1)8/2)

Z:ZGOE:
e n! i r(1+p3/2)

B=1.

0

Remark 3.3. We renormalized the GOE by a factor of v/2 to make the
Gaussian part of the density, exp(—% > k1 A2), standard. In the GUE case,
no normalization is required.

We break the proof into four major steps, considered in Section 3.2.3

3.2.3 Step A. Joint density of matrix entries
Let us label all independent entries of W/1/2:

{X12, X13,..., X03,..., X92, X33,...}.

above diag diag
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There are "("271) off-diagonal entries with variance 1/2, and n diagonal en-
tries with variance 1. The joint density of these entries (ignoring normaliza-
tion for a moment) is proportional to

1 n
f(z12, 713, ..., ¥22, 733, . . .) O<eXp( ZJTU—*Z zz) :eXP(—§ Z fUzzj)a

1<J =1 1,7=1
(3.2)
where in the right-hand side, we have x;; = xj; for 7 # j. We then recognize

z’"”: x?j = Tr(W?) = zn:)\%
k=1

ij=1

Including the normalization for Gaussians, one arrives at the density on
Rnr(n+1)/2.

FOW)YdW = n= 4 i exp< Iy )dW
41

n(n+1)

where dW is the product measure over the = independent entries.

3.2.4 Step B. Spectral decomposition

Since W is real symmetric, it can be orthogonally diagonalized:

W=QAQ", QeO(n),

where A = diag(A1, ..., A,) has the eigenvalues. Then, as we saw before, we
have

Tr(W?) =Tr(QAQTQAQT) = Tr(A?) = ZAQ

The map from W to (A, Q) is not one-to one, but in case W has distinct
eigenvalues, the preimage of (A, Q) contains 2" elements. See Problems 3.6.2
and 3.6.3.

It remains to make the change of variables from W to A, which involves
the Jacobian.

3.2.5 Step C. Jacobian

We now examine how the measure dW in the space of real symmetric ma-
trices factors into a piece depending on {);} and a piece depending on Q.
Formally,

AW — ’det ) ’ dA dO,
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where dQ is the Haar measure? on O(n), and dA is the Lebesgue measure
on R™. The Lebesgue measure later needs to be restricted to the “Weyl
chamber” Ay < --- < A\, if we want an ordering, this introduces the simple
factor n! in the final density.

Lemma 3.4 (Jacobian for Spectral Decomposition). For real symmetric
W = QAQT, one has
ow
‘det(mﬂ = const H ‘)\i — /\j},
1<i<j<n
where the constant is independent of the \;’s and depends only on n.

Remark 3.5. Equivalently, one often writes
dW = |A(\y,..., An)| dAdQ, where A(Ay, ..., A) = [J(A — M)
1<j
is the Vandermonde determinant.
We prove Lemma 3.4 in the rest of this subsection.

Consider small perturbations of A and Q. Write
W=QAQ", A=diag\i,...,\).

Let W be an infinitesimal change in W. We want to see how §dW depends
on JA and 6Q).

Parametrizing 0Q. Since @ € O(n), any small variation of ) can be
expressed as

Qexp(B) ~ Q(I + B),
where B is an infinitesimal skew-symmetric matrix (B" = —B). Indeed,
exp(B) must be orthogonal, so exp(B) " exp(B) = I. Thus, we have

(I+B)'(I+B)=1I, o B'+B=0.

Note that exp(B) is the matrix exponential of B, which is defined by the
usual power series. Note also that the dimension of O(n) is dim(O(n)) =
@, which matches the dimension of the space of skew-symmetric matri-

ces.

*Recall that the Haar measure on O(n) is the unique (up to a constant factor) measure
that is invariant under group shifts (in this situation, both left and right shifts work). In
probabilistic terms, if a random orthogonal matrix @ is Haar-distributed, then QR and
RQ are also Haar-distributed for any fixed orthogonal matrix R.
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Computing 6W. Under an infinitesimal change, say,
Qr—Q(I+B), A~ A+0A,

we have

W=QAQ" = Q'éWQ =dA+ BA — AB,

to first order in small quantities. Here we used the orthogonality of @ and
the skew-symmetry of B.

Local structure of the map. We see that the map W — (A,Q) in
a neighborhood of (A, Q) determined by 0A and B locally translates by
QT 6AQ, which implies the Lebesgue factor d\; ...d\, in 6W. Indeed, the
Lebesgue measure on R™ is invariant under orthogonal transformations.

The next terms, the commutator [B, A], has the form (recall that B is
infinitesimally small and A is diagonal):

0 big - A0 - A 0O - 0 bio
BA—-AB=|-biz 0 - 0 X - |_l0 X .- by 0
0 biaAo - 0 bia)
— [ =bi2Ar 0 -] —[b2A2 O
0 bia(A2 — A1)
— | bia(A1 — A2) 0

Thus, this action locally means that the infinitesimal b;; is multiplied by
Ai — Aj, for all 1 <7 < j < n. This is a scalar factor that does not depend
on the orthogonal component ¢, but only on the eigenvalues. Therefore,
this factor is the same in QT W Q.

This completes the proof of Lemma 3.4. See also Problem 3.6.5 for the
GUE Jacobian.

3.2.6 Step D. Final Form of the density
Putting Steps A—C together, we find:

dW = const - H |Ai — Aj|dA (Haar measure on O(n)).
i<j

does not depend on A;
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Hence, the joint density of {A1,...,A,} is, up to normalization depending
only on n, equal to

TT1x - Al exp(—% 3 Az). (3.3)
k=1

i<j

We leave the computation of the normalization constant in Theorem 3.2 as
Problem 3.6.6.

Remark 3.6. We emphasize that in the GOE case, the normalization W/+/2
for (3.3) is so that the variance is 1 on the diagonal and 3 off the diagonal.

3.3 Other classical ensembles with explicit eigen-
value densities

Let us briefly discuss other classical ensembles with explicit eigenvalue den-
sities, which are not necessarily Gaussian, but are related to other classical
structures like orthogonal polynomials. These ensembles also have a built-
in parameter S (and in the cases § = 1,2,4, they have invariance under
orthogonal /unitary/symplectic conjugation).

3.3.1 Wishart (Laguerre) ensemble

In this subsection, we describe another classical family of random matri-
ces whose eigenvalues form a fundamental example of a S-ensemble with a
“logarithmic” pairwise interaction. These are called the Wishart or Laguerre
ensembles. Their importance arises in statistics (covariance estimation, prin-
cipal component analysis), signal processing, and many other areas.

Definition via SVD

Let X be an nxm random matrix with iid entries drawn from a real/complex/quaternionic
normal distribution. We assume n < m. We can perform the singular value
decomposition (SVD) of X:

X=U v,

0 Sn

where U,V are orthogonal /unitary/symplectic matrices (depending on f3),
$1,.-.,8n > 0 are the singular values of X, and t means the corresponding
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conjugation. For example, in the real case, si,...,s, are the square roots
of the eigenvalues of XX .

Moreover, let W = XXT; this is called the Wishart random matrix
ensemble. We have

)\i:s?, 1=1,...,1n; AL>-- 2> A, >0

These eigenvalues admit a closed-form joint probability density function
(pdf) in complete analogy with the GOE/GUE calculations from previous
subsections.

Joint density of eigenvalues

Theorem 3.7 (Wishart eigenvalue density). The ordered eigenvalues Ay, ..., A, >
0 of the n x n Wishart matrixc W have the joint density on {\; > 0} propor-
tional to

n
ﬁ (m—n+1)— .
H (i — Aj) H A? ep(—%),
1<i<j<n i=1
where § = 1,2,4 corresponds to the real, complex, or quaternionic case,

respectively.

Idea of proof (sketch). The proof is a variant of the derivation for the joint
eigenvalue density in the GOE/GUE case (see Section 3.2.2). One writes
down the joint distribution of all entries of X, changes variables to singu-
lar values and orthogonal /unitary transformations, and identifies the Jaco-
bian factor as [],_; |s? — 5?\5 =ILi<; N — Aj|?. The extra factors in front
arise from the powers of \; (i.e. from [, s;) and the Gaussian exponential
exp(—% > SZQ) when reshaped to exp(—% > )\i). O

Remark 3.8. The exponent of A\; in the product is often written as o =
g(m —n+1) —1. One also sees the name multivariate Gamma distribution
in statistics. For 8 = 1 the ensemble is sometimes called the real Wishart
(or Laguerre Orthogonal) ensemble; for 8 = 2 it is the complex Wishart (or
Laguerre Unitary) ensemble; and = 4 (not discussed in detail here) is the
symplectic version. In point processes, the case 8 = 2 is also referred to as

the Laguerre orthogonal polynomial ensemble.

3.3.2 Jacobi (MANOVA /CCA) ensemble

The Jacobi (sometimes called MANOVA or CCA) ensemble arises when one
looks at the interaction between two independent rectangular Gaussian ma-
trices that share the same number of columns. Statistically, this corresponds
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to questions of canonical correlations or multivariate Beta distributions. In
random matrix theory, it appears as yet another fundamental example of a
B-ensemble with an explicit eigenvalue density.

Setup

Let X be an n x t real (or complex) matrix and Y be a k x t matrix, with
n <k <t. Assume X and Y have iid Gaussian entries (real or complex) of
mean 0 and variance 1 and are independent of each other.

Definition 3.9 (Projectors and canonical correlations). Denote by
Py = X'(XX")'X  (or XT(XX") X)),
the orthogonal (unitary) projector onto the row span of X. Similarly, define
Py =Y (YY) ly.

These are t X t projection matrices of ranks n and k&, respectively, embedded
in a space of dimension t. One checks that Px and Py commute if and only
if the row spaces of X and Y are aligned in a certain way. The canonical
correlations between these two subspaces are the singular values of Px Py .
Equivalently, the squared canonical correlations are the nonzero eigenvalues
of P XPy.

Since rank(PxPy) < min(n,k), there are at most min(n, k) nonzero
eigenvalues of Px Py . In fact, generically (when the subspaces are in “general
position”), there are exactly min(n, k) nonzero eigenvalues.

Example 3.10. For n = k = 1, we have

(X,Y)

Xyt Y

Px Py =
which is a rank one matrix with the only nonzero singular eigenvalue (X,Y).

Therefore, the singular value is exactly the sample correlation coefficient
between X and Y.

Jacobi ensemble

Theorem 3.11 (Jacobi/MANOVA/CCA Distribution). Let X and Y be
as above, each having iid (real or compler) Gaussian entries of size n X t
and k X t, respectively, with n < k < t. Assume further that X and Y are
independent of each other (this is the null hypothesis in statistics).
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Then the nonzero eigenvalues A1, ..., , of the matrix Px Py lie in the
interval [0,1] and have the joint density function of the form

n B _ Blt—n—kt1) —
H|>\Z B )\j|ﬁ H}\ZQ(/C n+1)—1 (1 7)\2) 5 (t—n—k+1) 17
i<j i=1

up to a normalization constant that depends on n,k,t (but not on {\;}).
Here again B =1 for the real case and B = 2 for the complex case.

This distribution is called the Jacobi (or MANOVA, or CCA) ensem-
ble, and it is also sometimes called the multivariate Beta distribution. In
point processes, the 8 = 2 case is often referred to as the Jacobi orthogonal
polynomial ensemble.

Remark 3.12. The derivation is again parallel to that in the GOE/GUE
context, but one now keeps track of the row spaces and the relevant rectan-
gular dimensions. The matrix (X X ") (or (X XT)) is invertible with high
probability whenever n < ¢t and X is in general position. The distribution
above reflects the geometry of overlapping projectors in a higher-dimensional
space R? (or C?).

3.3.3 General Pattern and g-Ensembles

We have now seen three classical examples:

e Wigner (Gaussian) ensembles (real/complex/quaternionic),
o Wishart/Laguerre ensembles W = XX T,

e Jacobi/MANOVA/CCA ensembles.

Their eigenvalue densities (ordered or unordered) always display the same

building blocks:
IT =x17 < JTvow,

1<i<j<n i=1

where 8 indicates the real (8 = 1), complex (8 = 2), or symplectic (8 =
4) symmetry class, and V() is a single-variable potential function. Such
distributions are often referred to as 5-ensembles or log-gases, reflecting that
the factor [T, ;|\ — Aj|? can be interpreted as the Boltzmann weight for
charges with a logarithmic pairwise repulsion.
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Remark 3.13. Beyond these three classical families, there are many other
matriz models and discrete distributions whose eigenvalues produce similar
log-gas structures but with different potentials V' (\). These share many of
the same techniques and phenomena (e.g. local eigenvalue statistics, largest-
eigenvalue asymptotics, etc.) that appear throughout modern random ma-
trix theory.

Remark 3.14. For § = 2, the connection to orthogonal polynomials sug-
gests discrete models of log-gases, which are powered by most known orthog-
onal polynomials in one variable from the (q-)Askey scheme [KS96]. For
example, the model of (uniformly random) lozenge tilings of the hexagon
is connected to Hahn orthogonal polynomials [Gor21] whose orthogonality
weight is the classical hypergeometric distribution from probability theory.

3.4 Tridiagonal form for real symmetric matrices

Any real symmetric matrix can be orthogonally transformed into a tridiag-
onal matrix. This fact is standard in numerical linear algebra (the “House-
holder reduction”) and also central in random matrix theory—notably in
the Dumitriu-Edelman approach [DE02] for Gaussian ensembles.

Theorem 3.15. Any real symmetric matric W € R™™™ can be represented
as

W =Q'TQ, Q¢eO(n),

where T is real symmetric tridiagonal. Concretely, T has monzero entries
only on the main diagonal and the first super-/sub-diagonals:

d a1 0 e 0
a1 d2 a9 s 0
T = 0 (6 %) d3
. . Op—1
0 0 - ap1 dyp

Definition 3.16 (Householder reflection). A Householder reflection in R™
is a matrix H of the form

-
H=1-2_"
o]
One checks that H' = H, H?> = I, and H is orthogonal (i.e. H'H = I).
Geometrically, H is the reflection across the hyperplane orthogonal to v.

v € R™ nonzero column vector.
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Proof of Theorem 3.15. Let A € R™*"™ be a symmetric matrix. We will show
how to orthogonally conjugate A into a tridiagonal matrix T'.

Step 1: Zeroing out subdiagonal entries in the first column. Write

A in block form as
<a11 TT)
A = ,
r B

where 7 € R™ ! is the rest of the first column below aii, and B is (n —
1) x (n — 1). We seek an orthogonal matrix H; acting on R*~! (and in the
full space R™ it preserves the first basis vector e; and its orthogonal comple-
ment) that “annihilates” the part of this first column below the subdiagonal.
Specifically, H; is a Householder reflection chosen so that H; when acting
in the (n — 1)-dimensional subspace spanned by r zeroes out all but the first
entry of r. In the ambient space R™, H; has a block form, so that it does
not touch the 11-entry of the matrix A. Since A is symmetric, conjugating
A by H; also zeroes out the corresponding superdiagonal entries in the first
row. Concretely,

d1 a1 0 0
a1 ok ke
HlAH;r - 0 x = *
0 I

This is always possible because Householder reflections can exchange any
two given unit vectors. Note also that a; = ||r|.

Step 2: Inductive reduction on the trailing principal submatrix.
Next, we restrict attention to rows 2 through n and columns 2 through n.
Let H2 be a second Householder reflection that acts as the identity on the
first row and column, and zeroes out the subdiagonal entries of the second
column (viewed within that trailing (n — 1) x (n — 1) block). Conjugate
again:

Hy (H1AH|)H, = (H.H:)A(H| H)).

Now the first two columns (and rows) are in the desired form.

Step 3: Repeat for columns (and rows) 3, 4, .... By repeating this
procedure for each successive column (and row, by symmetry), we eventually
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force all off-diagonal entries outside the main and first super-/subdiagonals
to be zero. After n — 2 steps, the resulting matrix

T =Q"AQ, Q = HiHy -+ Hy_o,

is tridiagonal, and @) is orthogonal because it is a product of orthogonal
(Householder) transformations.

Since each Hj is orthogonal, none of these transformations change the
eigenvalues of A. Thus T has the same spectrum as A. This completes the
tridiagonalization argument. O

Remark 3.17. This Householder procedure is also used in practical nu-
merical methods for eigenvalue computations: once a real symmetric matrix
is reduced to tridiagonal form, specialized algorithms (such as the QR al-
gorithm) can then be applied more efficiently. Overall, computations with
tridiagonal matrices are much simpler and with better numerical stability
than with general dense matrices.

3.5 Tridiagonalization of random matrices

Here we discuss the tridiagonal form of the GOE random matrices, and
extend it to the general beta case.

3.5.1 Dumitriu—Edelman tridiagonal model for GOE

Theorem 3.18. Let W be an n x n GOE matriz (real symmetric) with
variances chosen so that each off-diagonal entry has variance 1/2 and each
diagonal entry has variance 1. Then there exists an orthogonal matriz Q
such that

W=Q'TQ,
where T is a real symmetric tridiagonal matriz of the special form
d1 (05} 0

o dy an

0 (%) d3

T:

and the random variables {d;, aj}i<i<n, 1<j<n—1 are mutually independent,
with

di ~ N(Oal)a a; = 9
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where X2 is a chi-square distribution with v degrees of freedom.

Remark 3.19 (Chi-square distributions). The chi-square distribution with
v degrees of freedom, denoted by x2, is a fundamental distribution in statis-
tics and probability theory. It arises naturally as the distribution of the
sum of the squares of v independent standard normal random variables. For-
mally, if Z1, Zs, ..., Z, are independent random variables with Z; ~ N(0, 1),
then the random variable ,
Q=Y 7
i=1

follows a chi-square distribution with v degrees of freedom, i.e., Q@ ~ 2.
In the context of the Dumitriu-Edelman tridiagonal model (Theorem 3.18),
the subdiagonal entries «; are defined as o = X%{j . One can call this a
chi random variable, as this is a square root of a chi-square variable.

The parameter v does not need to be an integer, and the chi-square
distribution is well defined for any positive real v, by continuation of the

density formula.

Idea of proof of Theorem 3.18. This construction is essentially a specialized
version of the Householder reduction in Section 3.4, set up so that each step

matches precisely the distributions o ~ 1/ XZQ_j and d; ~ N(0,1). One uses
the rotational invariance of Gaussian matrices to ensure at each step that
the “residual vector” is isotropic (i.e., its distribution is invariant under
orthogonal transformations). The norm of that vector yields the x2-type
variables. O

Thus, to study the eigenvalues of a GOE matrix W, one can equivalently
study the (much sparser) random tridiagonal matrix 7.

3.5.2 Generalization to S-ensembles

The tridiagonal GOE construction (Theorem 3.18) extends to a whole fam-
ily of ensembles, parametrized by g > 0. In particular, for § = 1,2,4 we
get the classical Orthogonal, Unitary, and Symplectic (GOE/GUE/GSE)
ensembles, respectively. The general § case is known as the [-ensemble;
outside of the classical cases 8 = 1, 2,4, there is no matrix ensemble inter-
pretation with iid entries, but the tridiagonal form model still works.
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We saw that the S-ensembles arise naturally as log-gases in physics, with
density proportional to

exp(— iv()\z)> H })\i - /\j|ﬂ

1<i<j<n

for some potential V. The simplest choice, V(\) = %)\2, corresponds to

Gaussian (-ensembles, which in the classical cases reproduce GOE/GUE/GSE.

Remark 3.20 (Tridiagonal Construction for General ). A breakthrough
[DE02] showed that the Gaussian (-ensembles (for any § > 0) can be rep-
resented as eigenvalues of real symmetric ¢ridiagonal matrices whose entries
are independent (but not identically distributed), and have Gaussian and
chi distributions:

e The diagonal entries are iid standard normal random variables N'(0, 1).

2
e The subdiagonal entries are a; = 1/ X("i;j)ﬁ, where 2 is a chi-square
distribution with v degrees of freedom. Here we use the fact that
the parameter v in the chi-square distribution does not need to be an
integer.

e The superdiagonal entries are determined by symmetry.

In the next lecture, we will see how the tridiagonal form allows to prove
the Wigner’s semicircle law for the Gaussian S-ensembles.

3.6 Problems

3.6.1 Invariance of GOE and GUE

Show that the distribution of the GOE and GUE is invariant under, respec-
tively, orthogonal and unitary conjugation. For GOE, this means that if W
is a random GOE matrix and () is a fixed orthogonal matrix of order n, then
the distribution of QW QT is the same as the distribution of W. (Similarly
for GUE.)

Hint: write the joint density of all entries of GOE/GUE (for instance,
GOE is determined by n(n + 1)/2 real random independent variables) in
a coordinate-free way.
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3.6.2 Preimage size for spectral decomposition

Show that for a real symmetric matrix W with distinct eigenvalues, if
W = QAQT is its spectral decomposition where @ is orthogonal and A =
diag(A1, ..., Ay) is diagonal with (A1 > --- > A,), then there are exactly 2"
different choices of @ that give the same matrix W.

3.6.3 Distinct eigenvalues

Show that under GOE and GUE, almost surely, all eigenvalues are distinct.

3.6.4 Testing distinctness of eigenvalues via rank-1 pertur-
bations

Suppose A is an eigenvalue of a fixed matrix W with multiplicity £. Consider
the rank-1 perturbation

W. =W + auu', a~N(0,e),

where u € R™ is fixed. Prove that with probability one (in «), the eigenvalue
A splits into £ distinct eigenvalues of W-.

Hint: Write the characteristic polynomial of W, as det(W. — uI). Show
that the infinitesimal change in o moves the roots in a non-degenerate way,
splitting a repeated root.

3.6.5 Jacobian for GUE

Arguing similarly to Section 3.2.5, show that the Jacobian for the spectral
decomposition of a complex Hermitian matrix is proportional to

T = N2

1<i<j<n

In particular, make sure you understand where the factor 2 comes from in
the complex case.

3.6.6 Normalization for GOE

Compute the n-dimensional integral (in the ordered on unordered form):

/A H()\i—/\j)exp<—%2)\i) A1 - .
k=1

1< <An i<j
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1 n
- nl/ TT1n -\l exp(—% ZA,%) A -+ - dn.
CIRT < k=1
Hint: The following identity might be useful:

& 2 1
/ x?me—.r /2 dl’ — 2m+1/21—\ <m + > .
e 2

3.6.7 Wishart eigenvalue density

Prove Theorem 3.7 (in the real case § = 1) by using the singular value
decomposition of X and the properties of the Wishart ensemble.

3.6.8 Householder reflection properties

Show that the Householder reflection H = I —2vv ' /||v]|? has the following
properties:

1. H is orthogonal, i.e., HT H = I.
2. H is symmetric, i.e., H' = H.
3. H is idempotent, i.e., H> = 1I.

4. H is a reflection across the hyperplane orthogonal to v.

3.6.9 Distribution of the Householder vector in random tridi-
agonalization

Consider the first step of the Householder tridiagonalization of a GOE ma-
trix W. Denote the first column by « € R”, and let

v=2x+ ae;, a = x|z

Then the first Householder reflection is given by

’U’U—r

(v,v)

H =1-2

Prove that:

1. ||v]|? follows a x2 distribution with v degrees of freedom (determine v
in terms of n).
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2. The direction v/||v|| is uniformly distributed on the unit sphere S"*~!
and is independent of ||v||.

Hint: View x as a Gaussian vector in R”, using the fact that the first column
of a GOE matrix (including its diagonal entry) is an isotropic normal vector
(up to small adjustments for the diagonal). Orthogonal invariance of the
underlying distribution ensures the direction is uniform on S"~1.

3.6.10 Householder reflection for GUE

Modify the tridiagonalization procedure which was discussed for the GOE
case, and show that the GUE random matrix can be transformed (by a
unitary conjugation) into

N(0,1) X2(n71)/\/§ 0 0 e
Xom-1)/V2  N(0,1)  Xom-2)/V2 0 o
0 Xom-2)/V2  N(0,1)  Xom-g/V2 -

0 0 Xo(m-3)/V2  N(0,1)

(this matrix is symmetric, and in the entries, we list the distributions).

3.6.11 Jacobi ensemble is related to two Wisharts

Let X be an nxm and Y be a k x m real Gaussian matrices with iid N'(0, 1)
entries, independent of each other, and assume n < k < m. Consider the

matrix
(XXT+vyY")H(xxT) ervm

1. Prove that it is well-defined (invertible denominator) with probability
1, and that it is symmetric and diagonalizable in R™.

2. Show that its eigenvalues lie in [0, 1] and follow a Jacobi (MANOVA)

distribution of parameters § = 1 and (n, k, m)

3. Identify explicitly how these parameters match the shape parameters
in the standard multivariate Beta / Jacobi pdf

T =1 TTaea=x)7,
1<j =1

with appropriate o,y in terms of n, k, m.
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Hint: Usethat X X" and YY" are (independent) Wishart matrices. Rewrite
(XX T+YYy) 'xxT

via block-inversion or projector-based arguments to see it is related to the
product of two orthogonal projectors in R™. The Jacobi distribution then
emerges from the overlapping subspace geometry.



Chapter 4

Semicircle law for GSE via
tridiagonalization. Beginning
determiantal processes

4.1 Recap

Note: I did some live random matrix simulations here and here — check
them out. More simulations to come.

4.1.1 Gaussian ensembles

We introduced Gaussian ensembles, and for GOE (8 = 1) we computed

the joint eigenvalue density. The normalization is so that the off-diagonal

elements have variance % and the diagonal elements have variance 1. Then

the joint eigenvalue density is

p(Alw"aATl):iHei%/\% H ()‘2_)\])7 AIZAQEZATL

4.1.2 Tridiagonalization

We showed that any real symmetric matrix A can be tridiagonalized by an
orthogonal transformation @:

QTAQ =T,

60
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where T is real symmetric tridiagonal, having nonzero entries only on the
main diagonal and the first super-/subdiagonals:

d o 0 e 0
(5] d2 a9 s 0
T = 0 (%) d3
. . Qn—1
0 0 -+ ap1 dyp

In the proof, each time we need to act in the orthogonal complement to the
subspace eq, ..., e,_1 (starting from ey), and apply a Householder reflection
to zero out everything strictly below the subdiagonal. (We apply the trans-
formations like A — HAHT, so that the first row transforms in the same
way as the first column of A).

4.2 'Tridiagonal random matrices

4.2.1 Distribution of the tridiagonal form of the GOE

Applying the tridiagonalization to GOE, we obtain the following random
matrix model.

Theorem 4.1. Let W be an n xn GOE matriz (real symmetric) with vari-
ances chosen so that each off-diagonal entry has variance 1/2 and each di-
agonal entry has variance 1. Then there exists an orthogonal matrix Q) such
that

Wo=Q'TQ,
where T is a real symmetric tridiagonal matrix
di ap 0
a1 dy o

0 (%) d3

T = : (4.1)

and the random variables {d;, aj}i1<i<n, 1<j<n—1 are mutually independent,

with
X
di ~ N(O,l), Q; = %a

where X2 is a chi-square distribution with v degrees of freedom.
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Remark 4.2 (Chi-square distributions). The chi-square distribution with v
degrees of freedom, denoted by x2, is a fundamental distribution in statistics
and probability theory. It arises naturally as the distribution of the sum of
the squares of v independent standard normal random variables. Formally,
if Z1,Zs,...,7, are independent random variables with Z; ~ N(0, 1), then
the random variable ,
Q=) 7
i=1

follows a chi-square distribution with v degrees of freedom, i.e., Q ~ x2. In
the context of Theorem 4.1, the a;’s can be called chi random variables.

The parameter v does not need to be an integer, and the chi-square dis-
tribution is well defined for any positive real v, for example, by continuation
of the density formula. The probability density is

1
f(fL‘) _ mxy/Q 16 J/’/Q7 x> 0.

Proof of Theorem 4.1. In the process of tridiagonalization, we apply House-
holder reflections. Note that the diagonal entries stay fixed, and we only
change the off-diagonal entries. Let us consider these off-diagonal entries.

In the first step, we apply the reflection in R”~! to turn the column vector
(a2,1,as1,--.,an1) into a vector parallel to (1,0,...,0) € R""!. Since the
Householder reflection is orthogonal, it preserves lengths. So,

1
ar =1/a3; + a3 + - +ay, ai1~/\/(0,§).

This implies that oy has the desired chi distribution. The distribution of
the other entries is obtained similarly by the recursive application of the
Householder reflections.

Note that a;’s and d;’s depend on nonintersecting subsets of the matrix
entries, so they are independent. This completes the proof. O

4.2.2 Dumitriu—Edelman GSE tridiagonal random matrices
Let us define a general g8 extension of the tridiagonal model for the GOE.

Definition 4.3. Let 5 > 0 be a parameter. The tridiagonal GSE is a
random n x n tridiagonal real symmetric matrix 7" as in (4.1), where d; ~
N(0,1) are independent standard Gaussians, and

1

Qj ~ ﬁXﬁ(n—j)a I1<j<n-—-1,
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are chi-distributed random variables.

We showed that for 8 = 1, the GBE is the tridiagonal form of the GOE
random matrix model. The same holds for the two other classical betas:

Proposition 4.4 (Without proof). For § = 2, the GBE is the tridiagonal
form of the GUE random matrix model, which is the random complex Her-

mitian matriz with Gaussian entries and maximal independence. Similarly,
for 8 =4, the GBFE is the tridiagonal form of the GSE random matriz model.

Moreover, for all 3, the joint eigenvalue density of GSE is explicit:

Theorem 4.5 ([DE02]). Let T be a GBE matriz as in Definition 4.3. Then
the joint eigenvalue density is given by

1 _1 n 2
p()\l,...,)\n): e 2 = AL H ’)\i—)\j|ﬁ, M > A > >N\,
) 1<i<j<n
This theorem is also given without proof. The proof involves linear
algebra and computation of the Jacobians of the change of variables from
the matrix entries to the eigenvalues in the tridiagonal setting. It can be
found in the original paper [DE02].

4.2.3 The case =2

For many questions involving local eigenvalue statistics, the case § = 2 (the
GUE, Gaussian Unitary Ensemble) is the most tractable. This is because
the joint density of the eigenvalues admits a determinantal structure coming
from a square Vandermonde factor [], (A — Aj)? and the Gaussian expo-
nential exp(—% > /\5) Moreover, for 8 = 2, the random matrix model and
its correlation functions can be expressed explicitly through determinants

involving orthogonal polynomials, namely, the Hermite polynomials.

Proposition 4.6 (Joint density for GUE and orthogonal polynomials).
Consider the GUE (Gaussian Unitary Ensemble) random matriz model, i.e.
an n x n complex Hermitian matrix whose entries are i.i.d. up to the Hermi-
tian condition, with each off-diagonal entry distributed as N (0, %)—i—iN(O, %)
and each diagonal entry N'(0,1). The ordered eigenvalues \y > --- > Xy, (or,
without ordering, thought of as an unordered set) satisfy the joint probability
density

p()\l, ey An) = ! H 67%/\? H (Az — )‘j)27 (42)
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where Zy 2 1s a normalization constant.
Moreover, if {1 (N)}32, is the family of Hermite polynomials, orthonor-

mal with respect to the measure w(X\) d\ = e >/2d\ onR (i.e., / UVie(A) Ye(N) w(X) dX =

1x—¢), then one can also write

A% n )\% n
p(A1,...,\n) = const - det wj_l(Ak)e*T] . det {1/}]‘_1()\]@)677} -
JR= J,R=
(4.3)
(the two determinants are identical, but let us keep this notation for future

convenience).

The square determinant structure is extremely useful. It is precisely the
B = 2 counterpart of the squared Vandermonde factor []; (A — )2

Remark 4.7 (Hermite polynomials). There are various normalizations of
Hermite polynomials. In random matrix theory for the Gaussian ensembles,
we often use the probabilists’ Hermite polynomials (sometimes called Hey,
but we use the notation Hy). There are various normalizations due to the
factor in the exponent of 2.

A convenient definition for use with the weight e=*/2 ig;
22 dk; 22
Hy(z) = (—1)%7@(@—7), k=0,1,..., (4.4)

whose leading term is 2*. Polynomials with the leading coeffient 1 are called
monic. The first few monic Hermite polynomials are

Hy(z) =1, Hi(z) ==, Hy(z) = 21, Hs3(z) = 233z, Hy(x) = 2 —62°+3.

The difference between Hj and 1 entering Proposition 4.6 is in a constant
normalization, since Hj are monic but not orthonormal, while v are or-
thonormal but not monic.

Sketch of the determinantal representation. In brief, one observes that the
factor [, ;(Ai—A;) is exactly the Vandermonde determinant A(Ay, ..., An) =

det [/\i_l];l p—1- Next, the Vandermonde determinant is also equal to the de-
terminant built out of any monic family of polynomials of the corresponding
degrees (by linear transformations), and so we get the desired representa-
tion. O

We will work with Hermite polynomials and the determinantal structure
in Proposition 4.6 in the next Chapter 5).



CHAPTER 4. SEMICIRCLE LAW FOR GSE VIA TRIDIAGONALIZATION. BEGINNING DETER!

4.3 Wigner semicircle law via tridiagonalization

If W is an n x n real Wigner matrix with entries of mean zero and variance
1 on the off-diagonal, then as n — oo, the empirical spectral distribution
(ESD) of W/\/n converges weakly almost surely to the Wigner semicircle

distribution: .
psc(dx) = 5=V 4 — 221, <o dr.

We already derived this in Chapter 2 by a direct combinatorial argument on
the trace. Now we present another proof by using the tridiagonal form of
W. The argument is conceptually simpler in some steps, because the matrix
is sparser (only tridiagonal). At the same time, we will establish the Wigner
semicircle law for the general GSE case (but only Gaussian), and thus it
will apply to GUE and GSE.

4.3.1 Moments for tridiagonal matrices

Consider the rescaled GSE matrix T'/+/n:

di/v/n ai/yn 0
T _ |a/Vn dfVi a/vn
Vn 0 az/vn ds/vn

)

where d; ~ N(0,1) and o ~ \%Xﬁ(nfj)' We want to show that the ESD

of T'/\/n converges to the semicircle law. We will mostly consider expected
traces of powers, and leave the analytic parts of the argument to the reader.
The k-th (random) moment of the ESD 15" 6, 18

1 7 \* 1 =
Sn(3) - S et us

i1 ip=1

where ¢;; are the non-rescaled entries of 7'. But now ¢;; is nonzero only if
li —j| <1, i.e. the (i,j) entry is on the main or first super-/subdiagonal. In
a closed product t;,4, - - - t;,i,, we thus get a closed walk in a linear graph on
the vertex set {1,2,...,n} with edges only between consecutive indices.
The relevant combinatorial objects encoding these walks are lattice walks
in Z2, starting at (0,m), ending at (k,m), and consisting of steps (1,0),
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x

Figure 4.1: Example of a lattice path starting at height 3.

(1,1), and (1,—1). The steps (1,0) correspond to picking the diagonal el-
ement; steps (1,1) correspond to picking ip11 = ip + 1, and steps (1,—1)
correspond to igy1 =iy — 1. See Figure 4.1 for an illustration of a path.

Now, each term in the sum in (4.5) corresponds to a path. Moreover,
for each path shape, there are O(n) summands corresponding to it. The
number of paths of length k starting from a fixed m is finite (independent
of n for m > 1), so we need to look more closely at the asymptotics of the
product in (4.5). This product involves chi random variables which depend
on n, too.

4.3.2 Asymptotics of chi random variables

One additional technical point in analyzing 7'//n is to note that «; is
roughly \/f(n — j)/2 for large n. Indeed, we have

14
Xo=>_7 Ebll=v, Var[]=2w
i=1
Now, since we are dividing by /n, we have

o s _J
\/%N\E\A—e, 0_56[0,1].

This estimate is valid in the “bulk” region, that is, when 6 is strictly between
0 and 1.
Let us make these estimates more precise. We have:
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Proposition 4.8 (Pointwise asymptotics in the bulk). Fiz small § > 0, and
let j range so that 0; := j/n € [8, 1 — 8]. Then for each such j, we have'

= V3(-0) + ol )

In particular,

_ /B , "
nh_{)go — 5(1 —0;) in probability.
Remark 4.9. Outside the bulk region (i.e. very close to 7 = 0 or j = n),
one would need a different statement to handle the case 5(n—7) is not large.

In our application, we only need the bulk behavior. See also Problem 4.7.3.

Meanwhile, on the diagonal, d;/y/n almost surely vanishes in the limit
as n — 0o, because d; is standard Gaussian and does not depend on n.

4.3.3 Completing the proof: global semicircle behavior

Putting the above pieces together, we see that

Z H ZW“ ik+1 = i1 by agreement. (4.6)
21, Lip=1/4=1

The terms in the sum have all iy’s close together (there are k indices, and they
differ by +1 from each other). We may think that they are close to some 0n,
where 6 € [0, 1]. We can consider only the case when § < 6§ < 1— 4 for some
fixed small § > 0; the case of edges does not contribute (see Problem 4.7.3).

If at least one of the ¢;;’s in (4.6) is on the diagonal, the term vanishes in
the limit. Therefore, it suffices to consider only the off-diagonal «;’s. The
number of length &k walks starting from m = 6n for § > ¢ is just the number
of lattice walks with steps (1,41). This number is (,!;2) 2 (From now on till
the end of the section, we assume that k is even — the moments become
zero for odd k).

Fixing the starting location § = % € (6,1 —90), we have

k
H zz2z+1 ﬁ/2)k/2( 9)k/2

"Here and below, O,(+) denotes a term that is stochastically bounded at the indicated
order as n — oo. That is, X, = Op(a,) means that for any € > 0, there exists M > 0
such that P(| X, /an| > M) < € for all sufficiently large n.

2Not Catalan yet!
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There is an extra factor 1/n in front in (4.6), which is interpreted as
transforming the sum over ¢1,...,%; into an integral in #. We thus see that
the moments converge to

() [a-o =) o

and we recover our favorite Catalan moments of the semicircle distribution.
This completes the proof.

Remark 4.10 (The factor (8/2)%/2). Note that the factor 3%/2 refers just
to the scaling of the Wigner semicircle law, and does not affect the semi-
circle shape. More precisely, the limiting semicircle distribution lies from

[—v/28,v28].
The density of the semicircle distribution on [—/23,+/20] is

lo _ a2
© el < V25,

B

and the moments are precisely (,8/2)k/2Ck/2 (for even k).

4.4 Wigner semicircle law via Stieltjes transform

Let us stay in the tridiagonal setting, and explore a more analytic method
to derive the Wigner semicircle law.

4.4.1 Tridiagonal structure and characteristic polynomials

We let
d1 - A aq 0

a7 d2 - A a9

0 (6%) dg—)\

T—-M =

We want to understand eigenvalues, that is, zeros of the characteristic poly-
nomial det(7" — A\I).
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Three-term recurrence for the characteristic polynomial

As a warm-up, let us consider the characteristic polynomial of a tridiagonal
matrix.

For each k = 1,...,n, denote by Ty the top-left & x k& submatrix of T.
Define the characteristic polynomial of that block:

pk()\) = det(Tk — )\Ik)

By convention, set pg(A) := 1. Then a determinant expansion argument
along the first column gives the following three-term recurrence relation:

Lemma 4.11 (Three-Term Recurrence). The characteristic polynomial py(\)
of the k x k tridiagonal matriz Ty, satisfies the three-term recurrence

Pk+1()\) - (dk+l - A)pk()\) - a%:pkfl()‘% k= 17 ey, = 17

See also Problem 4.7.4.

Spectral connection and eigenvalues

The eigenvalues Aq,...,\, of T are exactly the roots of p,()\). For any
A € C, if A is not an eigenvalue, then (T - A ) is invertible.
When A is close to a real eigenvalue, the behavior of the resolvent (T —

Al )71 becomes large. Tracking these poles in the complex plane is the key
to the resolvent or Stieltjes transform approach.

4.4.2 Stieltjes transform / resolvent

Recall that for a matrix A with real eigenvalues Aq,..., A, the Stieltjes
transform (or Green’s function, or resolvent trace) is

Gn(z) = %Tr[(A -z, zeC\R

If z =z + iy is in the upper half-plane (y > 0), this G, (z) can be seen as

Gule) = [,

R

where u, = %2221 0y, is the empirical spectral measure. Equivalently,
Im G, (z +i0™) encodes the density of eigenvalues around z. Thus, under-
standing G, (z) for large n pinpoints the limiting spectral distribution.
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Let us apply this to A =T/y/n (an n x n tridiagonal matrix). We want
to investigate

Go(z) = %Tr(T/\/ﬁ —z0)7Y

for complex z. Since T'/+/n has nonzero entries only on the main and first
off-diagonals, one can write down a linear recurrence for the entries R;; of
the resolvent R(z) = (T//\/n — zI)~!, from the equation

Z(T/\/ﬁ - ZI)ik Rkj = 1i:j-
k
We have

d; o o1
(—Z - Z) Ri; + _;Ri-i-l,j + —=Ri_1; = 1.

v v N

Let fu(0) = R|ng|,|nu)- Then the above equation becomes

W0l fu@) + 2 0+ 1m) + T 0 1) = T
vn vn Vn -
Scaling with n (and ignoring the boundary conditions and convergence is-

sues), we get a differential equation for f,(6):

pL—0)

_qu(e) + 5

[fu(0) +2fu(0)] = 6(0 — w). (4.7)

The resolvent trace (the Stieltjes transform) is then the integral of the so-
lution:

1 & e
PIBEEE /0 fa(6) do.

Update 2025-02-05: Probably, the limit of «;/\/n
should be taken as 1 and not as a function of 7. At
least this is what is done in the next approach in Sec-
tion 4.4.3.
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4.4.3 Approach via continued fractions

We derive the Wigner semicircle law using the continued fraction repre-
sentation of the Stieltjes transform (or Green’s function) associated with a
tridiagonal (Jacobi) matrix. In the Dumitriu-Edelman model for the GUE
(let us assume [ = 2 for simplicity) after appropriate rescaling, the matrix’s
diagonal entries vanish and the off-diagonal entries become essentially con-
stant in the bulk. This leads to a homogeneous three-term recurrence for
the corresponding monic orthogonal polynomials. We then show that the
Stieltjes transform of the limiting measure may be written as an infinite
continued fraction, which yields a quadratic self-consistent equation. Solv-
ing that equation and applying the Stieltjes inversion formula recovers the
semicircle density.
A real symmetric tridiagonal matrix (a Jacobi matriz) has the form

ag bl 0 s 0
bl aq bg :
J = 0 b2 a2 e O )
; . : bn—l
0 -+ 0 bp—1 ap—1

with b; > 0. Associated with J is a sequence of monic polynomials {py(z) }n>0
defined by the three—term recurrence

po(2) =1,
p1(2) = 2 — ao, (4.8)
Pnt1(2) = (2 — an)pn(2) — bipn,l(z), n > 1.

It is well known that there exists a probability measure p on R such that
the polynomials {p,(z)} are orthogonal with respect to p.

In the Dumitriu-Edelman tridiagonal model for the GUE (with g = 2)
the matrix is constructed so that, after rescaling by 1/n, one obtains

di/v/n ai/y/n 0
T ar/v/n da/vn az/yn
v 0 az/v/n d3/v/n
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with ]
d; ~ N(0,1), Qg ~ \ﬁXZ(n—j)'
In the large n limit, the diagonal entries d;/+/n vanish and (in the bulk) one
has
o
— — 1.
n

Thus, in the limit the recurrence coefficients become
ap =0, b, =1,

for all n.
Note 2025-02-05: This is probably the correct way

to approach the global asymptotic behavior of 71’s

spectrum in connection with the Stieltjes transform.

This should be justified; however, this idea should

help to unstick the argument in Section 4.4.2.

In this homogeneous case the three-term recurrence (4.8) reduces to

po(z) =1, pi(z) =2, Prs1(2) = 2Pn(2) — Pa-1(2).

The Stieltjes transform of the measure u is defined by

m(z):/RdM(x), 2€C\R.

Z—T

A classical result in the theory of orthogonal polynomials (e.g., see
[Sok20]) is that m(z) may be written as the continued fraction

m(z) = ! . (4.9)

zZ—ag —

Z— a1 —

Z—ay — ——————
z_a3_...

In our case, since a,, = 0 for all n and b,, = 1 for all n, this simplifies to

m(z) = . (4.10)
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Observe that the infinite continued fraction in (4.10) is self-similar; that
is, if we denote the entire continued fraction by m(z), then the tail of the
continued fraction is again m(z). Thus we have the relation

1

m(z) = P g S

Multiplying both sides by the denominator yields

m(z) (z — m(z)) =1
Expanding the left-hand side we obtain the quadratic equation
m(z)? —zm(z) +1=0. (4.11)
The quadratic (4.11) has the solutions
z £ m
2

To determine the correct branch, recall that for z in the upper half—plane
(Im(z) > 0) we must have Im m(z) > 0. The proper solution is
— 2_4
m(z) = % (4.12)

where the square root is defined so that vz2—4 ~ z as z — oo and
Im V22 —4 > 0 when Im(z) > 0.

The density p(z) of the measure u is recovered from the Stieltjes trans-
form via the inversion formula:

m(z) =

1
p(x) = = lim Im m(z + ie).

T e—07t

For z in the interval (—2,2) one computes that
(x+ie)2—4 —— ivV4— a2
e—0t
Thus, from (4.12) we have, for z € (-2, 2),

z —iv4 — 2

m(x +1i0) = 5

Taking the imaginary part gives

4 — 2
Tm m(z + i0) = Tw
so that

1 1
p(x) = =Im m(z +140) = 2—\/4 — 22, xe(-2,2).
7r 7r

This is precisely the celebrated Wigner semicircle law.
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4.5 Determinantal point processes (discrete)

We are now going to start the discussion of the local eigenvalue behavior
at f = 2, started in Section 4.2.3. We begin with a general discussion
of determinantal point processes (DPPs), starting in discrete world. The
continuous world is going to be considered in the next Chapter 5.

In this section, we introduce determinantal point processes (DPPs) over a
discrete state space and explore some of their properties. Our main reference
is [Borl1].

Setup. Let X be a (finite or countably infinite) discrete set endowed with
the counting measure p. A point configuration on X is any subset X C X,
finite or infinite, with no repeated points.?> We write Conf(X) for the set
of all point configurations, which carries the natural o-algebra generated by
the functions 1(,¢xy, © € X. A random point process P on X is a probability
measure on Conf(X).

Definition 4.12 (Determinantal point process). A random point process
P on a discrete set X is determinantal if there exists a kernel function
K : X x X — C such that for every finite collection of pairwise distinct
points x1,...,x, € X,

P{21,...,2, € X} = det[K (z;, z;)]

L (4.13)

That is, all finite-dimensional distributions of P take a determinantal form.
The function K is called a correlation kernel for P.

Correlation functions and the kernel. The condition (4.13) captures
all finite-dimensional distributions of P. Equivalently, let

pn(z1,...,xy,) = P{there is a particle at each z;}

for distinct x1,...,x,. In the discrete setting, p, is sometimes called the
(unordered) correlation function. The process is determinantal if and only
if

pn(T1, ... x,) = det [K(wi,xj)]zjzl for each n > 1.
Basic properties. If P is a DPP with correlation kernel K: X x X — C,
then for any subset I C X,

P{X NI =g} =det[1 - K], (4.14)

3Some texts allow multiplicities, but we disallow them here.
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where K7 is the operator [K (a:,y)] viewed as a matrix if X is finite,

zyel (
or an infinite matrix if X is countably infinite with convergent sums). More
generally, if Iy,..., I, C X are disjoint subsets, then the joint event {|X N
Ii| = ng for 1 < k < m} can be expressed via the determinant det [1 -

> opeq 2K, | and its derivatives.

Remark 4.13. For any function ¢ : X — C such that the operator [(1 —
o(x))K (z, y)]x Jex is trace class, the exponential generating function for ¢
is ’
E[H qs(x)} = det[1— (1— ¢)K].
zeX
This identity makes determinantal point processes more tractable than gen-
eral processes.

4.6 Application of determinantal processes to ran-
dom matrices at § =2

In this final section of the lecture, we illustrate how the theory of determinan-
tal point processes (DPPs) introduced in Section 4.5 applies to the study of
local eigenvalue statistics of random matrices. We concentrate on the § = 2
setting, where DPPs typically govern the joint behavior of eigenvalues at
microscopic (local) scales in the bulk and at the edge of the spectrum. We
also include a simpler example of a Poisson process to highlight the role of
correlation functions.

4.6.1 Local eigenvalue statistics (bulk and edge scaling lim-
its)

Given an n X n random Hermitian matrix W whose eigenvalues A\; > Ay >
- > )\, are real, we often want to study the local arrangement of the
eigenvalues:

o Bulk regime: eigenvalues near some interior point a of the limiting
(global) spectral support, rescaled so that we see “microscopic” spac-
ing on the order of O(1). For Wigner or Gaussian ensembles, one
typically looks at a point « in the interior (—2,2) of the semicircle
support and then rescales eigenvalues around a by the typical local
spacing 1/(np(«)). Here p(«) is the density of eigenvalues at «, which

is semicircle density in the Wigner case.
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e FEdge regime: eigenvalues near an endpoint of the support (for instance,
near x = 2 for the semicircle distribution). One then uses a rescaling
of order n?/3 (in many classical models) to see nontrivial statistics
describing how eigenvalues “peel off” near the boundary.

In both cases, one replaces the original sequence of eigenvalues {\;} by
a point process on R. The bulk scaling leads to the sine-kernel process (e.g.
sin(m(x—y))/(m(x—y)) in the GUE) or more generally to other determinantal
processes. The edge scaling typically leads to the Airy-kernel process. For
Gaussian ensembles at § = 2, these processes are determinantal, and one
can explicitly write correlation kernels involving special functions (sine, Airy,
and more generally Hermite polynomials).

4.6.2 Correlation functions and densities

We recall from Section 4.5 (in the discrete setting) that a point process X
on a space X can be described by its correlation functions {pi}32,. In the
continuous setting (e.g. X = R or an interval), these are defined so that

pr(x1,...,xk)dxy - - -dx, = (probability that there is a particle in each small set dx; near z;, for 1 <
(4.15)

Equivalently, py is the k-th (unordered) joint density of the process. In

particular,

p1(z)dr = expected number of particles in a small interval of length dz near z.

For a determinantal point process in the continuous setting, there is a kernel
K (z,y) such that

pr(x1,...,z) = det [K(xz,x])]k for each k > 1. (4.16)

ij=1

The simplest example is the Poisson process (see Section 4.6.3).

4.6.3 Poisson process example

A Poisson point process with intensity A > 0 on R is defined by:
e Particles are scattered independently over real line,

e The expected number of particles in an interval I C R is A|I].
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Equivalently, one often states that the number of points in any interval
I follows a Poisson(A|I|) distribution, and disjoint intervals are filled in-
dependently. One can also check that the correlation functions factorize
completely:
_ Kk
pk(xl,...,xk) = \"

Hence, in the Poisson process, there is no “interaction” or “repulsion” be-
tween points: the position of one particle does not affect the probability of
having other particles nearby. In contrast, a determinantal point process
typically exhibits repulsion: if you know a particle is present near x, it low-
ers the density of particles nearby. This effect is crucial in random matrix
ensembles at 5 = 2.

4.7 Problems

4.7.1 Eigenvalue density of GSE

Read and understand the main principles of the proof of Theorem 4.5 in
[DE02].

4.7.2 Chi-square mean and variance

Let X be a random variable with x2 distribution. Compute the mean and
variance of X. (If v is an integer, you can use the fact that y2 is a sum of v
independent squares of standard normal random variables. How to extend
this to non-integer v7)

4.7.3 Edge contributions in the tridiagonal moment compu-
tation

Show that the cases when the i,’s are close to the edge (6 =0 or 1) in (4.6)

do not contribute to the limit of the moments.

4.7.4 Hermite polynomials and three-term recurrence

Show that the monic Hermite polynomials Hy(z) (4.4) satisfy the three-term
recurrence relation

Hy(x) = xHg_1(x) — (k — 1)Hp_o(x).
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4.7.5

Compute the determinant

[ 1 1 1 ]
X1 X2 Tn
2 2 2
det L1 Ly Ty
n—1 n—1 n—1
L L1 ) Tn

4.7.6 Gap probabilities
1. Prove identity (4.14) for DPPs.

2. Prove the generalization computing {|X N I;| = ny for 1 <k <m}.

4.7.7 Stieltjes transform approach for tridiagonal matrices

Complete the derivation from Section 4.4.2 to obtain the limiting Stieltjes
transform G(z) for the tridiagonal matrix T'/y/n.

Remark 4.14. This is more of a literature search. It is extensive, and
would make an excellent topic for a presentation.



Chapter 5

Determinantal Point
Processes and the GUE

5.1 Recap

In Chapter 4 we discussed global spectral behavior of tridiagonal GSE ran-
dom matrices, and obtained the Wigert semicircle law for the eigenvalue
density.

In this lecture we shift our focus to another powerful technique in random
matrix theory: the theory of determinantal point processes (DPPs). In the
B =2 (GUE) case the joint eigenvalue distributions can be written in deter-
minantal form. We begin by discussing the discrete version of determinantal
processes, and then derive the correlation kernel for the GUE using orthog-
onal polynomial methods. Finally, we show how the Christoffel-Darboux
formula yields a compact representation of the kernel and indicate how one
may represent it as a double contour integral—an expression well suited for
steepest descent analysis in the large-n limit.

5.2 Discrete determinantal point processes

5.2.1 Definition and basic properties

Let X be a (finite or countably infinite) discrete set. A point configuration
on X is any subset X C X (with no repeated points). A random point
process is a probability measure on the space of such configurations.

Definition 5.1 (Determinantal Point Process). A random point process
P on X is called determinantal if there exists a function (the correlation

79
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kernel) K : X x X — C such that for any n and every finite collection of
distinct points x1,...,x, € X, the joint probability that these points belong
to the random configuration is

P{x1,...,x, € X} = det [K(xz,x])}jj v

Determinantal processes are very useful in probability theory and ran-
dom matrices. They are a natural extension of Poisson processes, and have
some parallel properties. Many properties of determinantal processes can
be derived from “linear algebra” (broadly understood) applied to the kernel
K. There are a few surveys on them: [Sos00], [HKPV06], [Borll], [KT12].

Let us just mention two useful properties.

Proposition 5.2 (Gap Probability). If I C X is a subset, then
P{X NI =0} =det|[l - K],

where Ky is the restriction of the kernel to I. If I is infinite, then the
determinant is understood as a Fredholm determinant.

Remark 5.3. The Fredholm determinant might “diverge” (equal to 0 or
1).

Proposition 5.4 (Generating functions). Let f : X — C be a function
such that the support of f — 1 is finite. Then the generating function of the
multiplicative statistics of the determinantal point process is given by

E

I1 f(:c)] :det[H(Af_J)K ,

zeX

where the expectation is over the random point configuration X C X, Ay
denotes the operator of multiplication by f (i.e., (Arg)(x) = f(x)g(x)) and
the determinant is interpreted as a Fredholm determinant if X is infinite.

Remark 5.5 (Fredholm Determinant — Series Definition). The Fredholm
determinant of an operator A on ¢?(X) is given by the series

> "
det(I + A) = Z ﬁ Z det [A(xu x])] ij=1
n=0

"1, mn€X

where the term corresponding to n = 0 is defined to be 1.
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5.3 Determinantal structure in the GUE

5.3.1 Correlation functions as densities with respect to Lebesgue

measure

In the discrete setting discussed above the joint probabilities of finding points
in specified subsets of X are given by determinants of the kernel evaluated at
those points. When the underlying space is continuous (typically a subset
of R or RY), one works instead with correlation functions which serve as
densities with respect to the Lebesgue measure.

Let X C R be a random point configuration. The n-point correlation
function pp(x1,...,xy,) is defined by the relation

P{there is a point in each of the infinitesimal intervals [z;, z;+dx;], i = 1,...

= pn(T1,...,2p) dxy - - - dy.

For a determinantal point process the correlation functions take a determi-

nantal form: i

pr(x1, ..., x) = det [K(xl, xj)}ijfl'
Remark 5.6. The reference measure does not necessarily have to be the
Lebesgue measure. For example, in the discrete setting, we can also talk
about the reference measure, it is the counting measure. The correlation
kernel K (z,y) is better understood not as a function of two variables, but as
an operator on the Hilbert space L?(X, du), where y is the reference measure.
One can also write K (x,y)u(dy) or K(z,y)+/p(dz)p(dy) to emphasize this

structure.

This formulation is particularly useful in the continuous setting, as it
allows one to express statistical properties of the point process in terms of
integrals over the kernel. For example, the expected number of points in a
measurable set A C R is given by

E[#(X NA)]= /Apl(ac) dx,

while higher order joint intensities provide information about correlations
between points.

7n}
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5.3.2 The GUE eigenvalues as DPP
Setup

We start from the joint eigenvalue density for the Gaussian Unitary Ensem-
ble (GUE)

1 n
p(r1,. .., xn)dxy -+ - dxy = 1_‘[6_93?/2 H (x; — l‘j)gd.%‘l coodxy,.
i=1

Zn,2 1<i<j<n
(5.1)
We will show step by step why this is a determinantal point process,
k
pr(x1, ..., x) = det [Kn(a)z,x])} o k>1,
1/7]:

with the kernel defined as
n—1
§=0

where the functions
1 —x
vil@) = e pi@Vul@), (@)=
J

are constructed from the monic Hermite polynomials {p;(z)} which are or-
thogonal with respect to the weight w(x):

/ pi(@)pr()e™ 1 da = hy 6.

Recall that “monic” means that the leading coefficient of p;(z) is 1, and we
divide by the norm to make the polynomials orthonormal.

Writing the Vandermonde as a determinant

I @i—=)?

1<i<j<n
is the square of the Vandermonde determinant. Recall that the Vander-
monde determinant is given by

The product

1 oz 2} - a2t
1z a3 - )t

A(xzy,...,oy) = H (xj —a;) = det

1<i<j<n
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Thus, we have

[ e = (s )

- i,j=1
1<i<j<n

Orthogonalization by linear operations

Since determinants are invariant under elementary row or column opera-
tions, we can replace the monomials 27! by any sequence of monic polyno-
mials of degree j—1. In particular, we choose the monic Hermite polynomials
pj—1(x) and obtain
det [iL’Z } = det [pj_l(:vi)] .
ij=1 ij=1
The first few monic Hermite polynomials are

po(.’E) = 1’ Pl(x) =, PQ(fE) = 332—1, P3($) = 5[73—31‘, p4($) = ‘T4_61"2+3'

The orthogonality condition for these polynomials is
o0 9 9
/ pj()pr(z)e™™ 12 dz = hj b
—00

We define the functions
g2
¢j(x) = pj(x)e ™ /4, (5.2)

and then introduce the orthonormal functions

- jwj () = —=py(a)e 1. (53)
J

Vhy
Note that here the weight splits as e=2°/2 = e*m2/4e*x2/4, which is useful in
the next step. The functions 1; form an orhtonormal basis of the Hilbert
space L?(R, dx):

¥j(z)

/wj(w)wk(x)d:r—éjk, G k=0,1,....
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Rewriting the density in determinantal form

Substituting the determinant form into the joint density (5.1), we have

n

p(x1, ..., xn) = Zi ; H e /2 [det [pj,l(xi)} jj:J 2.
) ’

Incorporate the weight factors into the determinant by writing

ﬁe—x?/Q _ ﬁ (e—x$/4 ) €_I§/4> ’
i=1

i=1

so that

n

ﬁ e/ det [Pj—l(%')} y

=1
i=1 2,

n

= det [(fﬁj—l(ﬂﬂi)}

ij=1

Thus, the joint density becomes

p(x1,... ) = ~1 {det[@_l(m)]n r.

w2 inj=1

This squared-determinant structure is characteristic of determinantal point
processes.

We now compute the k-point correlation function by integrating out the
remaining n — k variables:

n!
pk(.%'l, .. .,.’Ek) = m /Rn_k p(l’l, ce ,xn) de,'k+1 c dxn (54)

Remark 5.7. When defining the k-point correlation function, one might
initially expect a combinatorial factor corresponding to the number of ways
of choosing k variables out of n, namely (Z) = ﬁlk), The absence of an
extra k! in the denominator is due to the fact that x1,...,x; are fixed, and
we are not integrating over all permutations of these variables.

Theorem 5.8 (Determinantal structure for squared-determinant densities).

We have
k

pr(x1, ..., zk) = det [Kn(:ci,xj)]ij_l,

with the correlation kernel given by

n—1
Kn(z,y) = > th(x)e;(y).
j=0
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Proof. We begin by writing the joint density as

N g [det[@_l(xi)r r.

Zn72 17]:1

Expanding the square of the determinant, we have

n 2
[det [¢j_1<xi>}i J = > sgn(o)sgn(r H% 1 (@) br(iy—1 (),
= o, 7ESK
where S,, denotes the symmetric group on n elements.
Next, to obtain the k-point correlation function pg(x1,...,xx), we in-
tegrate out the remaining n — k variables using (5.4). Substituting the
expansion of the squared determinant into the expression for pg, we have

pr(T1, ..., Tg) = m U,Tze:sn sgn(o) sgn(7)
H¢o xl ¢T (4)—1 ‘rl H /ng(j (SU) dx 7 . (55)
j=k+1

Now, change the functions ¢;(x) to the orthonormal functions v;(x) using

the relation
z) = \/hjj(x)
This substitution yields

/% )¢ (j)-1(7) dw —\/ha(j)1hT(j)1/R%(j)1(ﬂf)¢r(j)1(90) dz.

By the orthonormality of the 1;’s, we have

/R¢a(j)1(37)¢r(j)1(33) dr = 5o(j),r(j)'

Therefore, for the indices j = k+1, ..., n, the integrals enforce the condition
o(j) =7(j). Asaresult, the double sum over ¢ and 7 reduces to a single sum
over permutations on the first k indices, and the factors for the remaining
indices simply contribute to the normalization constant.
Let us add more details here. In (5.5), we get, using the symmetry over
L1y Tt
k
PE(T1se e ) = —————=— Z sgn(o) sgn(r) H¢a(i)—1($z‘)¢7(i)—1($i)-
(n— k)1 Zn o, 7S, i=1
o(k+1)=7(k+1),...,0(n)=7(n)
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Indeed, here we integrated over zpyq,...,x,, and passed from the func-
tions ¢g, ¢1, ..., On_1 to Yo, ¥1,...,%n_1. The passage to the orthonormal
functions only introduces the constant hghi ...h,—1 Lby symmetry), and
together with n!, we include it into the normalization Z,, 5. The normaliza-
tion constant does not depend on k, and we later will show that the final
normalization becomes 1.

To continue with (5.6), we need two general lemmas.

Lemma 5.9 (Cauchy-Binet formula). Let A;; and B;; be rectangular ma-
trices of size m X p and p X m, respectively, with m < p. Then

S auBy| = Y det[ac]" aet[Bo]"

=1 ig=1 l1<lo<--<lp ’

m

det

Proof. For any 1 < k < p, the coefficient of 27~ in the polynomial det(z1,+
X) is the sum of the k x k principal minors of X. If m < p and A is an
m X p matrix and B is an p X m matrix, then

det(zI, + BA) = 27" det(z1,, + AB). (5.7)

If we compare the coefficient of zP~™ in (5.7), the left hand side will give
the sum of the principal minors of BA while the right hand side will give
the constant term of det(z1l,, + AB), which is simply det(AB). This yields
the desired result. O

Lemma 5.10 (Andreief identity). Let f;(z), gi(x) € LY(R) fori=1,...,n.
Then
/ det[fi(xj)]ﬁjzl det[gi(aﬁj)]ﬁjzldwl o odx, = nldet [/R fi(x)g;(x) dx} ‘

ij=1

Proof. We have by expanding the determinants in the left-hand side:

/R Y senlo) sen() [T fooo)gr(ea)don -+ din.
=1

o,TESY

Now, we can sum over o7 ', and use the fact that the operation of inte-
gration over R" is symmetric in the variables x1,...,z,. We thus need to
integrate the products of f(,,—1y;(2;), yielding the desired determinant in
the right-hand side. The factor n! comes from the fact that for each fixed
o7~ !, there are n! different pairs (o, 7). This completes the proof. O
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Let us now continue with (5.6), and finish the proof of Theorem 5.8. To
sum over o, 7, let us denote I = {o(1),...,0(k)} C [n] = {1,...,n}. The
set [n] \ I can be ordered in (n — k)! ways, and since o and 7 must coincide

n [n] \ I, the product of their (partial) signs is +1 there. Thus, we have

(5.6) = const,, Z Z sgn(o’) sgn(r H@Da (@)Y -1 (i)

ICnl, T|=k o’ /€S (1)

where S(I) is the set of all permutations of I. The sum over o', 7/ is actually
a product of two sums over two independent permutations, and thus we get
the product of two determinants:

k k
det {1/}52.,1(33]‘)} 1 det [Wi*l(wjﬂi:f I= {51 <y < < Ek}.

By Lemma 5.9, we can rewrite the sum (over I) of products of two determi-
nants as a single determinant of the sum. Thus, we have

k
pr(x1,. .., 2) = const - det[ (a:z,:nj)} gt (5.8)

)=

where the kernel is given by

n—1
y) =Y ¥i(x)v;(y)
j=0

The fact that the normalization constant in (5.8) is indeed 1 follows from
Lemma 5.10. Indeed, once the integral of p, over R™ is equal to n!, the
integral over x; > --- > x, becomes 1 by symmetry, as it should be. This
completes the proof of Theorem 5.8. 0

5.3.3 Christoffel-Darboux formula

Theorem 5.11 (Christoffel-Darboux Formula). Let {pj(x)};>0 be a family
of monic orthogonal polynomials with respect to a weight function w(x) on
an interval I C R. Their squared norms are given by

[ pi@ (o) (o) do = by 5

Define the orthonormal functions
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Then the kernel
n—1 n—1 ()
K, 9) = Y2 wi(a)s(9) = Vol Y BEPY),
J=0 j=0 1

admits the closed-form representation

Kn(z,y) = Vw(z)w(y) hnl_l pn(x)pn_l(yi :Zn_l(x)p"(y), (5.9)

with the obvious continuous extension when r =y.
Proof. Define
PRRPE SYCi0)
n 7y - . hj I
7=0

so that
Ky(z,y) = Vw(x)w(y) Sn(z,y).

Our goal is to prove that

1

(z —y)Sn(z,y) = e

[Po@pai ) = por (@paly)]. (5.10)

Since the polynomials are monic and orthogonal, they satisfy the three-
term recurrence relation

rpj(z) = pj1(x) + a5 pj(x) + Bjpj-1(x), J =0,

. : h; :
with the convention p_1(z) = 0 and where f; = ;- - This recurrence comes
i

from the three facts:

1. The polynomials are orthogonal with respect to the weight function
w(zx) supported on the real line;

2. The operator of multiplication by z is self-adjoint with respect to the
inner product induced by w(z).

3. The multiplication by x of p; gives p;11 plus a correction of degree
< j.

Writing the recurrence for both p;(x) and p;(y) yields:

zp;j(x) = pj+1(z) + o; pj(x) + B pj-1(),
ypi(y) = pi+1(y) + a;pj(y) + B pi—1(y)-
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Multiplying the first equation by p;(y) and the second by p;(z), and then
subtracting, we obtain:

(—=y)pj(2)pj(y) = pj+1(@)p;(y)—p;j(®)pj+1(y)+B5; [pjfl(:v)pj(y)—pj(w)pjfl (y)] :

Dividing by h; and summing over j = 0,...,n — 1 gives:
— 1
e )Sule) = S o [P @) =p @iy ]+Z [pi-1 ()0 ()= (@)pi1 ()]
7=0 7=0 J

A reindexing of the sums shows that the series telescopes, leaving only the
boundary terms. In particular, one finds

1

(z —y)Sn(z,y) = 7

(o (@)pa-1(y) = a1 (@)Pa(v)]

This establishes (5.10), and hence the representation (5.9) for K, (x,y).
The continuous extension to x = y is obtained via ’'Hopital’s rule. [
5.4 Problems

5.4.1 Gap Probability for Discrete DPPs

Let X be a (finite or countably infinite) discrete set and suppose that a point
process on X is determinantal with kernel

K:XxX—C,

so that for any finite collection of distinct points x1,...,z, € X the joint
probability that these points belong to the configuration is

P{zy,...,z, € X} :det[ (:EZ,:L‘])}”] v

)

Show that for any subset I C X (finite or such that the Fredholm determi-
nant makes sense) the gap probability

P{X N1 =02} =det|I - K|,

where K7 is the restriction of K to I x I.
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5.4.2 Generating Functions for Multiplicative Statistics

Let f: X — C be a function such that the support of f — 1 is finite. Prove
that for a determinantal point process on X with kernel K the generating
function

E[H f(x)} — det [I + (A - I)K]

zeX

holds, where Ay is the multiplication operator defined by (Arg)(z) = f(x)g(z).
Hint: Expand the Fredholm determinant series and compare with the defi-
nition of the correlation functions.

5.4.3 Variance

Let I be a finite interval, and let N(I) be the number of points of a deter-
minantal point process in I with the kernel K (z,y). Find Var(I) in terms
of the kernel K (x,y).

5.4.4 Formula for the Hermite polynomials
Show that the monic Hermite polynomials p;(x) are given by

dn
pn(2) = (_1)n€x2/2d37n€—:c2/2_

5.4.5 Generating function for the Hermite polynomials

Show that

o
tn _ 42 2
—n!pn(:c) = l*=t"/2,

n=0

5.4.6 Projection Property of the GUE Kernel
Show that the kernel

n—1
Kn(z,y) =Y t(2)e;(y),
=0

(with the orthonormal functions 1); defined as in the lecture) acts as an
orthogonal projection operator on L?(R). In other words, prove that for all
z,y €R

/_OO Ky (z,2)K,(z,y)dz = Ky(x,y).
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5.4.7 Recurrence Relation for the Hermite Polynomials

Show that the monic Hermite polynomials defined by

dn
po(a) = (1) 2o

satisfy the three-term recurrence relation
Pnt1(z) = 2 pn(2) — npa-1(2),

with the convention p_(z) = 0.

5.4.8 Differential Equation for the Hermite Polynomials

Prove that the monic Hermite polynomials p,(z) satisfy the second-order
differential equation

Po(@) — & pp(x) + npa(x) = 0.

5.4.9 Norm of the Hermite Polynomials
Show that

hn = / p(2)? e /2 do = nl\/2r.

5.4.10 Existence of Determinantal Point Processes with a
Given Kernel

Let X be a locally compact Polish space equipped with a reference measure
u, and let K (x,7) be the kernel of an integral operator K acting on L?(X, u).
Suppose that:

1. K is Hermitian (i.e. K(z,y) = K(y,x)),
2. K is locally trace class, and

3. 0 < K < I as an operator, that is, both the operator K and the
operator I — K are nonnegative definite. For K, this condition is

/ / @) K@ 9) /() dy() du(y) > 0
X JX

for all f € L*(X, p).



CHAPTER 5. DETERMINANTAL POINT PROCESSES AND THE GUE92

Under these conditions there exists a unique determinantal point process on
X with correlation functions given by
n

pn(T1,. .., xp) = det [K($i7fﬂj)]. -
1,)=

Explain why the condition 0 < K < [ is necessary. For the proof of the
existence and uniqueness of the determinantal point process, see [Sos00].



Chapter 6

Double contour integral
kernel. Steepest descent and
semicircle law

6.1 Recap: Determinantal structure of the GUE

Last time, we proved the following result:

Theorem 6.1. The GUE correlation functions are given by
k
pr(x1, ..., og) = det [Kn(ﬂﬁuﬂﬁj)] ;

1,5=1

with the correlation kernel
n—1
Kn(z,y) =Y th(2);(y).
j=0

Here )
2
w]' (SU) = /47

— pi)e
where pj(x) are the monic Hermite polynomials, and h; are the normaliza-
tion constants so that 1;(z) are orthonormal in L*(R).

For this theorem, we need Cauchy—Binet summation formula and An-
dreief identity (which is essentially the same as Cauchy—Binet, but when
summation is replaced by integration). Having these, we can write

n!
Pk($17--~7$k) = m_kj),/ﬂgn_kp(l’l,...,wn) dxgyq - day

93
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k

1
(n— k) Zna ZS sgn(o) sgn(r) 1_I1 Vo (i)—1(Ti)Vr (i) -1 (i)
T O, TEOn 1=
o(k+1)=7(k+1),....,0(n)=T(n)

= consty, Z Z sgn sgn HT% (4) 331 wr'(z ( )
()

ICn], [I|=k o', 77€S(

= consty, Z det [¢;,, (x )]I; =1 det [, (zj)]z,jzl ’
1C[n], [I|=k

where [ = {i1,...,ix} is a subset of [n] of size k, and S(I) is the set of
permutations of I. The last sum of products of two determinants is written
by the Cauchy-Binet formula as

k

n—1
const,, - det Z Pj(xa);(zp) )

3=0 a,f=1

and finally the constant is equal to 1 by Andreief identity.

6.2 Double Contour Integral Representation for
the GUE Kernel

6.2.1 One contour integral representation for Hermite poly-
nomials

Recall that the GUE kernel is defined by

N—-1
= Pn(x)¥n(y)
n=0

with the orthonormal functions

where the (monic, probabilists’) Hermite polynomials are given by
2 v _ 2
pule) = (—1)e 2 e, (6.1)

Note that the monic Hermite polynomials are uniquely defined by the or-
thogonality property. We are not proving (6.1) here, it is an exercise.
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Lemma 6.2 (Generator function for Hermite polynomials). We have
t? "
exp(xt - 5) = an(x)ﬁ
n>0

The series converges for all t since the left-hand side is an entire function
of t.
Proof. Write the generating function as
" (_1)ntn z2/2 d" —z2/2
D opalw) =) e e
n>0 n>0
Since the factor e®*/2 does not depend on n, we can factor it out:
[ x2/2 (_t)n d" fx2/2
D pnlw) g =eT Py e,
n>0 n>0
Now, recall Taylor’s theorem: for any holomorphic function f we have

fa—t) =3 EL o)

n!
n>0

Applying this with f(x) = e=®/2 we deduce that

Z (—t)nﬂe—;ﬂm e
n! da" N '
n>0
Thus, our generating function becomes
t?’L 2 2 —(r— 2 2

> pala) g = 20

n>0
as desired. 0

By Cauchy’s integral formula we can write using Lemma 6.2:
n exp (:L‘t — %)
pn() = 5 ?é o, (6.2)

where the contour C' is a simple closed curve encircling the origin. Indeed,
here we use the complex analysis property

195 R S B
ori Jo L7 T 0, if k40,
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so (6.2) is simply a complex analysis version of the operation of extracting
the coefficient of t" in the Taylor expansion.

Therefore,
t2
1 2[4 ) expl|xt — %5
Un(x) = ——=pa(x) e = S "-5’5 <12)dt-
vV I’Ln hn 27 C gt

6.2.2 Another contour integral representation for Hermite
polynomials

We start with the Fourier transform identity
0 t2 ] _$2/2
eXp(——+th) dt =+V2me .
oo 2
Differentiating both sides n times with respect to z yields
P () ] /°° e
— e = — ity et /2HitE gy
dx" ( \ 21 —OO( )

Recalling the definition
— (_1\n %2/2 d" —z2/2
R ]

we obtain
(_1)n e:c2/2 0o

Pl =

Next, perform the change of variable

(’i t)n 67t2/2+itas dt.

s=1t, sothat t=—is, dt=—ids.

Under this substitution the factors transform as follows:

(it)" =s",
and the exponent becomes
gy S ) i
——+itr=— i(—is)x=—+sux.
2 2 2

Thus, the integral transforms into

0o 9 ) 100 )
/ (it)" e V2t gt — —i/ s es /2T g,
—00 —100
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Substituting back we have

(_1)n €m2/2 ‘ 100 291
pn(z) = ——F—— (—1i) ste¥ TS s,
V2 —i00

That is,
’i(—l)n+1 em2/2 100

S C

Finally, change the sign of s, and we get:

2
sheS /28T g,

. 2 1
ieT /2 i

o) =" |

2 /9
shes /28T g,

I llerefore,
. g2 i
e /A 100

N V2T hyy J oo

2/9_
sheS 25T g,

6.2.3 Normalization of Hermite polynomials

Lemma 6.3. We have
hn = / pn(z)? e /2 dx = nlV/2r.

Proof. Multiply the generating function
t2 t"
exp <mt - 5) = an(x)ﬁ
n>0
with a second copy (with parameter s):
2 m
s s
exp(:cs — 5) = Z pm(:v)%
m>0

Then,

2 52 trs™
exp(a:t - 5) exp (:US - 5) = Z pn(az)pm(x)n!m!.
n,m>0

—z2/2

Integrate both sides against e dx. Using the orthogonality

/ pn(m)pm(x)e_mQ/de = hnénm,

—00
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the right-hand side becomes

On the left-hand side, we have

oo 2 2
/ e /2 exp (az(t +s)— ! —12_ i )dm.

—00

Completing the square in x or recalling the standard Gaussian integral yields

Varexp(L) ‘2“2 ) Varexplts).

Thus, we obtain

V27 exp(ts) = Z h'n (ts)™.

Expanding the left side as

n>0

and comparing coefficients, we conclude that

hn, V2
_ Ve =  h, =nlVv2r.

(n))2 — n!

This completes the proof. O

6.2.4 Double contour integral representation for the GUE
kernel

We can sum up the kernel (essentially, this is another proof of the Christoffel—
Darboux formula):

n—1
y) = Z V(@) r(y)

22— n—1

2 2
§l§dt/ dsexp{—2+a:t+2—ys}z$kt_k !

k=0

1= (s/D"
(6.3)



CHAPTER 6. DOUBLE CONTOUR INTEGRAL KERNEL. STEEPEST DESCENT AND SEMICIR

Here we used the two contour integral representations for Hermite polyno-
mials, and the explicit norm (Lemma 6.3). At this point, the ¢ contour is
a small circle around 0, and the s contour is a vertical line in the complex
plane. Their mutual position can be arbitrary at this point — the s contour
goes along the imaginary line. Indeed, the fraction % does not have a
singularity at s =t due to the cancellation.

Let us now move the s contour to be to the left of the ¢ contour, as in
Figure 6.1. On the new contours, we have |s| > |t|. Now we can add the
summands s*t %=1 for all K < —1 into the sum in (6.3). Indeed, for |s| > |¢],
the series in k converges, while the summand s¥¢7%~1 has zero residue at 0
and thus adding the summands does not change the value of the integral.

N

dh\t
-/

Figure 6.1: Integration contours for the GUE kernel (6.4).

With this extension of the sum, formula (6.3) becomes

K, (e.y) = ey —2* /4§I§dt/ exp —sy—§+tx} (f)” (6.4

s—t t

Remark 6.4. The s contour passes to the right of the ¢ contour, but it
might as well pass to the left of it. Indeed, one can deform the s contour to
the left while picking the residue at s = t:

2 2
exp{%—sy—%—i—tw} <s)n Hay)
-] =-—e .

s—t t
This function is entire in ¢, and its integral over the ¢ contour is zero. There-
fore, there is no difference where the s contour passes with respect to the ¢

211 Resszt
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contour.

6.2.5 Conjugation of the kernel

2 2
The kernel K, (z,y) contains a factor e* 7~ = g(x)/g(y), where g(-) is
a nonvanishing function. This factor can be safely removed, since in all
determinants det[K, (x;, x])]k i j—1 representing the correlation functions, the
conjugation factors g(z;)/g(x;) do not affect the value of the determinant.
Thus, we can and will deal with the correlation kernel

exp —sy—%+t1‘} s\ 7
() . (65)

s—t t

K, (x, "

and will use the same notation for it. Throughout the asymptotic analysis
in Section 6.4 below, other conjugation factors may appear, but we can
similarly remove them.

6.2.6 Extensions

Many other versions of the GUE / unitary invariant ensembles admit deter-
minantal structure:

1. The GUE corners process [JNOG]

2. The Dyson Brownian motion (e.g., add a GUE to a diagonal matrix)
[NF98]

3. GUE corners plus a fixed matrix [FF14]

4. Corners invariant ensembles with fixed eigenvalues UDUT, where D
is a fixed diagonal matrix and U is Haar distributed on the unitary
group [Met13]

We will discuss the corners process structure in the next Chapter 7.
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6.3 Steepest descent — generalities for single in-
tegrals
6.3.1 Setup

In many problems arising in random matrix theory—as well as in asymptotic
analysis more generally—it is necessary to evaluate integrals of the form

I(A) = / A g(2) dz, (6.6)

where

e A > 0is a large parameter,

e f(z) and ¢(z) are holomorphic functions in a neighborhood of the
contour v C C,

e and the contour + is chosen in such a way that the integral converges.

The method of steepest descent (also known as the saddle point method)
provides a systematic procedure for obtaining the asymptotic behavior of
I(A) as A — +oo.

The key observation is that for large A, the exponential term e/ (?) ig
highly oscillatory or decaying, so that the main contributions to the integral
come from small neighborhoods of points where the real part of f(z) is
maximal. Moreover, since we can deform the integration contour v to pick
points where Re f(z) is even bigger, it makes sense to find points not only
on the original contour where Re f(z) is maximal. Such critical (or saddle)
points are found from the equation with the complex derivative:

fi(z)=0

Indeed, since Re f(z) is harmonic and f(z) satisfies the Cauchy-Riemann
equations, the condition f’(z) = 0 is equivalent to the condition that Re f(z)
has zero gradient. Moreover, by harmonicity, all critical points of Re f(2)
are saddle-like.

Once the saddle points are identified, one deforms the contour ~ to I' so
that T passes through the saddle point(s) with the maximal value of Re f(z),
and, moreover, such that on the rest of the new contour I' the real part of
f(2) is strictly less than the value(s) at the saddle point(s). The decrease
of Re f(z) along I may be ensured if one picks I to be steepest descent for
Re f(2). By holomorphicity of f(z), the steepest descent of Re is equivalent
to the condition that the imaginary part of f(z) is constant along I
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Remark 6.5. In practical applications, one does not need I' to be fully
steepest descent (it is usually hard to control). One can either choose I' to
be steepest descent in a neighborhood of the critical point and estimate the
real part outside, or simply estimate the change of Re f(z) directly along a
given contour.

Remark 6.6. The function ¢(z) might not be holomorphic, and might have
poles. The deformation of the contour from ~ to I' might pick residues at
these poles. These residues can be harmless (easy to account for) or not
(hard to account for; or affect the asymptotics of the integral), and one has
to be careful with the contour deformation.

Despite the caveats in Remark 6.5 and 77, in what follows in this section
we will discuss the easiest case of steepest descent analysis. We also assume
that there is only one saddle point zy to take care of.

6.3.2 Saddle points and steepest descent paths

Definition 6.7 (Saddle point). A point zg € C is called a saddle point of
f(z) if
f'(z0) = 0.

We shall assume in what follows that at every saddle point under consider-
ation the second derivative satisfies

f"(z0) # 0.

Definition 6.8 (Steepest descent path). Let zp be a saddle point of f(z).
A curve I C C passing through z is called a steepest descent path for f(z) if
along I the imaginary part of f(2) is constant (i.e., Im(f(z)) = Im(f(20))
for all z € T), which implies that the real part Re(f(z)) decreases away
from zg.

In a neighborhood of a saddle point z,
1
s=ztw, ) = () + 30 (o) + O,

If we denote '
F"(z0) = | (20) ],

then writing w = r €’?, we obtain

F(2) = £z0) + 57" ()l o) 4 O,
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For the imaginary part to remain constant in a neighborhood of zy, and,
moreover, for the phase of the quadratic term to be # modulo 27, one must
choose ¢ so that

2040y =m (mod 2). (6.7)

We need the phase 7 so that the exponent is negative, for the integral to
converge.

There are two directions satisfying (6.7) through zp, and we use both of
them for our contour I'. Along these directions, one finds that

Re(f(2)) = Re(f(20)) — 51" z0)lr? + O(r),

so that Re(f(z)) is maximal at z = z¢ and decays quadratically as one moves
away from zy along the steepest descent paths.

6.3.3 Local asymptotic evaluation near a saddle point

Assume now that the contour v in (6.6) has been deformed so that it passes
through a saddle point zy along a steepest descent path. In a small neigh-
borhood of zy, we write

2 =29+ w/VA,

so the local contribution of a neighborhood of zy to the integral is

VA oo

Here the integration is taken along the steepest descent direction, so that the
quadratic term in the exponent is real and negative. (That is, by the choice
(6.7), we have Re(f”(20)w?) = —|f"(20)|r?.) Then the Gaussian integral

evaluates to
1= 2
/ ey = 7//% .
— |f"(20)]

Hence, we arrive at the following fundamental result.

1 1 1en 2
— Af(20) 2f" (z0)w
I,(A) =e #(20) (1 + O( %)> / e2 dw. (6.8)

Theorem 6.9 (Local asymptotics via steepest descent). Let zg be a saddle
point of f(z) with f'(z0) = 0 and f"(20) # 0, and assume that ¢(z) is
holomorphic in a neighborhood of zy. Then, as A — +o0o, the contribution
of a small neighborhood of zy to the integral (6.6) is given by

2T

Ly(A) ~ eAf(Zo)ﬁb(Zo) m,

A — +oo. (6.9)
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Moreover, the behavior (6.9) captures the full asymptotic behavior of the
integral (6.6) as long as on the new contour T', the real part of f(z) is
mazximized at zy and is separated from Re f(zo) everywhere else on T outside
of a small neighborhood of 2.

Under appropriate assumptions (typically, if f and ¢ are holomorphic
on a neighborhood that can be reached by the deformed contour and if the
contributions away from the saddle points are exponentially small), one may
show that the error in approximating the full integral by the sum of the local
contributions is itself exponentially small relative to the leading order terms.
In many cases, the next-order corrections can be computed by carrying the
expansion in (6.8) to higher order in w. (See, e.g., [Olv74] for a systematic
treatment. )

6.4 Steepest descent for the GUE kernel

6.4.1 Scaling
Let us now consider the GUE kernel (6.5),

2

s—1 t

where the integration contours are as in Figure 6.1.

We know from the Wigner semicircle law (established for real symmet-
ric matrices with general iid entries in in Chapter 2, and for the GUE in
Chapter 4) that the eigenvalues live on the scale y/n. This means that to
capture the local asymptotics, we need to scale

x=X\n-+ \A/f? y=Yvn+ \A/%, Ax, Ay € R. (6.10)
Moreover, if X # Y (i.e., different global positions), one can check that
the kernel vanishes. In other words, the local behaviors at different global
positions are independent. See Problem 6.5.1. In what follows, we take
Y =X.

Let us also make a change of the integration variables:

The integration contours for z and w look the same as in Figure 6.1, up to a
rescaling. However, as 0 and ¢t = s are the only singularities in the integrand,
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we can deform the z, w contours as we wish, while keeping |z| < |w| and the
general shape as in Figure 6.1.
We thus have:

Kn(Xv/n+ Az/yvn, Xv/n+ Ay/v/n)

ico _ w? 22 _ zAz—wAy
Jn ?gdz/ dwexp{n(logw log z + 5 5+ X(z —w) + === )}
(27T)2 C —100 w—==z ‘

(6.11)

Remark 6.10. The logarithms in the exponent are harmless, since for the
estimates we only need the real parts of the logarithms, and for the main
contributions, we will have z ~ w, so any phases of the logarithms would
cancel.

The asymptotic analysis of double contour integrals like (6.11) in the
context of determinantal point processes was pioneered in [Oko02, Section 3].

6.4.2 Critical points

Let us define )

S(z) = % +logz — Xz.

Then the exponent contains n (S(w) — S(z)). According to the steepest de-
scent ideology, we should deform the integration contours to pass through
the critical point(s) z.. of S(z). Moreover, the new w contour should max-
imize the real part of S(z) at z., and the new z contour should minimize
it. If S”(z.r) # 0, it is possible to locally choose such contours, they will be
perpendicular to each other at z.,.

Thus, we need to find the critical points of S(z). They are found from
the quadratic equation:

S'(z) :Z+1—X:0, Zer = Xi—X2_4 (6.12)
z 2
Depending on whether | X| < 2, there are three cases. Unless | X| = 2 (when
equation (6.12) has a single root), we have S”(z.) # 0.
In this lecture, we focus on the density function, which is obtained by
taking the asymptotics of the kernel K(z,z). In the next Chapter 7, we
discuss limits of the correlation functions.
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6.4.3 Imaginary critical points: |X| < 2, “bulk”

When | X| < 2, the critical points are complex conjugate. Denote them by
zer and Zgr. Since S(z) has real coefficients, we have

Re S(zer) = Re S(Zer).

Thus, we need to consider the contribution from both points. The behavior
of Re S(z) on the complex plane can be illustrated by a 3D plot or by a
region plot of the regions where Re S(z) — Re S(z.r) has constant sign. See

Figure 6.2 for an illustration in the case X = %

Figure 6.2: A 3D plot and a region plot of the regions where Re S(z) —
Re S(z¢r) is positive (highlighted) or negative, in the case X = % In this
case, z¢r ~ 0.25 4 0.961.

From the region plot, we see that the new z contour should pass through
the shaded region Re S(z) — Re S(zer) > 0, and the new w contour should
pass through the unshaded region Re S(z) — Re S(z¢) < 0.

Deforming the contours from Figure 6.1 to the new contours is impos-
sible without passing through the residue at w = z. Moreover, this residue
appears only for certain values of z. Namely, let us first make the z con-
tour to be the positively (counterclockwise) oriented unit circle. It passes
through the critical points z.. and Zs.. Since the original w contour is to
the right of the z contour, we only encounter the residue when z is in the
right half of the arc.

Thus, we can write

Zer
# _ # + / 27i Resp., dz, (6.13)
old contours new contours Zer

where in the single integral, the z contour passes to the right of the origin,
along the right half of the unit circle.
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It remains to consider the two integrals in the right-hand side of (6.13).
Recall that the correlation functions are defined relative to a reference mea-
sure, and the right object to scale is

1
%Kn(X\/ﬁ + Ax/v/n, X/n+ Ay/v/n)d (Ay).

—-1/2

K (z,y)dy =

The extra factor n compensates the prefactor y/n in (6.11).
The single integral takes the form
;,L' Zer dz _ Sin(arg Zc'r') ) (614)
27 ) T
The double integral in (6.13) has both contours in the “steepest descent”
regime, which means that the main contribution is

t en(Re S(zer)—Re S(zer))  copst
const - ~

vn vn o
At this rate, the double integral over the new contours does not contribute
to the asymptotics of the correlation functions. Recall that the correla-
tion functions are expressed as finite-dimensional determinants of the kernel
Kn(z,y), and the error O(n~'/?) is negligible in the limit n — 4-o00. This
is because the main term comes from the single integral, which does not
vanish.
Note that

X+vX?2—-4 ) 4— X2
— sin(arg zer) = —

This again establishes the Wigner semicircle law for the GUE kernel.

Zer =

Remark 6.11. This is already the third proof — we worked with trees,
the tridiagonal form, and now via steepest descent. The steepest descent
method is the least general one, but it allows to access local correlations in
the bulk and at the edge.

We will consider other regimes, |X| > 2 and |X| = 2, in the next Chap-
ter 7.

6.5 Problems

6.5.1 Different global positions

Show that if in (6.10) we take X # Y, then K, (z,y) vanishes as n — +oo.
Moreover, establish the rate of decay in n. Is it power-law or exponential?
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6.5.2 Sine kernel
Compute the integral (6.14).

6.5.3 Discrete sine process

Define the discrete sine kernel on Z by

sin p(z — y) vy

deine(xa y) = TI'(IL’ N y)

) =1y,
T
where p € [0,1] is the density parameter.
Let p = 1/2. Compute (numerically) the asymptotics of the two events
under the discrete sine process:

P(oo...ooo...o), ]P’(oooo...oo)7
e e N e —_——
n times n times 2n points

If the sine process was of independent random points (with the same density
1/2), both events would have the same probability 272", Which event is
more favored by the sine process?



Chapter 7

Steepest descent and local
statistics. Cutting corners

7.1 Steepest descent for the GUE kernel

7.1.1 Recap

We continue the asymptotic analysis of the GUE kernel.
The GUE correlation kernel is defined by

n—1
Kn(z,y) =Y tbj(2)e;(y),
=0

where the functions

$i(w) = —=py(a) !

ﬁpj(fﬂ)@
J

are built from the monic Hermite polynomials p;(z) with normalization
constants h; ensuring that the ¢;’s form an orthonormal system in L?(R).
Using the generating function

t? "
exp(xt - 5) = an(x)m,

n>0

one obtains by Cauchy’s integral formula

n exp (xt — %)
pl@) =55 P~

109
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which leads to

e~ /4 ) exp(:):t — %)
nla) = St —

Starting from the Fourier transform identity

> t2 >
/ exp(—E —i—it:c) dt = 2me /2,

—o0
and differentiating with respect to x, then changing variables, one obtains

z2/4  pico
te n 82 —ST
Yn(z) = Nz s es /2T s,

By inserting the above representations for v, (z) into the kernel sum,
one arrives at the double contour integral formula (after conjugation and
the trick with removing 1/(s —t)):

eXp —sy—%—i—tz} (s n
)

K,
( s—t

The integration contour C' is a small contour around 0, and s is passing to
the right of C.

This representation is especially useful for performing asymptotic anal-
ysis (for example, via the steepest descent method) and for deriving results
such as the semicircle law.

7.1.2 Scaling

Let us now consider the GUE kernel,

exp —sy—%%—tw} (S)n

Ky (z,
s—t t

We know from the Wigner semicircle law (established for real symmet-
ric matrices with general iid entries in in Chapter 2, and for the GUE in
Chapter 4) that the eigenvalues live on the scare y/n. This means that to
capture the local asymptotics, we need to scale

A
y:Y\/ﬁ%—iy, Az, Ay € R. (7.1)

A
x:X\/ﬁ+—x, T

NG
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di\t
-/

Figure 7.1: Integration contours for the GUE kernel.

Moreover, if X # Y (i.e., different global positions), one can check that
the kernel vanishes. In other words, the local behaviors at different global
positions are independent. In what follows, we take Y = X.

Let us also make a change of the integration variables:

t = zv/n, 5 = wy/n.

The integration contours for z and w look the same as for ¢t and s, up to a
rescaling (Figure 7.1). However, as 0 and ¢t = s are the only singularities in
the integrand, we can deform the z,w contours as we wish, while keeping
|z] < |w| and the general shape as in Figure 7.1.

We thus have:

Ky (Xv/n+ Az /yvn, Xv/n+ Ay//n)
; 2 2 Az—wA
00 expi{n 10gw—logz+w——L+X(z_w)+Zniy
vn ygdz/ dw { ( 2 2 >}
C —100

(2m)? w—z

(7.2)

Remark 7.1. The logarithms in the exponent are harmless, since for the
estimates we only need the real parts of the logarithms, and for the main
contributions, we will have z ~ w, so any phases of the logarithms would
cancel.

The asymptotic analysis of double contour integrals like (7.2) in the
context of determinantal point processes was pioneered in [Oko02, Section 3].
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7.1.3 Critical points

Let us define )

S(z) = %+logz—Xz.

Then the exponent contains n (S(w) — S(z)). According to the steepest de-
scent ideology, we should deform the integration contours to pass through
the critical point(s) 2z of S(2). Moreover, the new w contour should max-
imize the real part of S(z) at z.-, and the new z contour should minimize
it. If S”(zer) # 0, it is possible to locally choose such contours, they will be
perpendicular to each other at z.,.

Thus, we need to find the critical points of S(z). They are found from
the quadratic equation:

1 X+vX2-4
S'(z)=z2+-—-X=0, Zop = ———————. (7.3)
z 2
Depending on whether | X| < 2, there are three cases. Unless | X| = 2 (when
equation (7.3) has a single root), we have S”(z.) # 0. We will consider the
three cases in Section 7.1.4 and 7?77 below.

7.1.4 Imaginary critical points: |X| < 2, “bulk”

When | X| < 2, the critical points are complex conjugate. Denote them by
zer and Zg. Since S(z) has real coefficients, we have

Re S(zer) = ReS(Zer).

Thus, we need to consider the contribution from both points. For simplicity
of the computations, let us consider only the case X = 0. See Problem 7.5.1.
We have

Zer = 1, S" (zer) = 2.

The behavior of Re S(z) on the complex plane can be illustrated by a 3D
plot or by a region plot of the regions where Re S(z) —Re S(z.r) has constant
sign. See Figure 7.2 for an illustration in the case X = % (We take X # 0
to break symmetry, for a better intuition.)

From the region plot, we see that the new z contour should pass through
the shaded region Re S(z) — Re S(zer) > 0, and the new w contour should
pass through the unshaded region Re S(z) — Re S(z¢) < 0.

Deforming the contours from Figure 7.1 to the new contours is impos-
sible without passing through the residue at w = z. Moreover, this residue
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Figure 7.2: A 3D plot and a region plot of the regions where Re S(z) —
Re S(zr) is positive (highlighted) or negative, in the case X = 3. In this

case, zqr ~ 0.25 4 0.961.

appears only for certain values of z. Namely, for X = 0, let us first make
the z contour to be the positively (counterclockwise) oriented unit circle. It
passes through the critical points z.. = 7 and Z;- = —i. Since the original w
contour is to the right of the z contour, we only encounter the residue when
z is in the right half of the circle.

Thus, we can write

7
# = # +/ 2mi Resy=, dz, (7.4)
old contours new contours —i

where in the single integral, the z contour passes to the right of the origin,
along the right half of the unit circle.

It remains to consider the two integrals in the right-hand side of (7.4).
Recall that the correlation functions are defined relative to a reference mea-
sure, and the right object to scale is

1
vn
The extra factor n~'/? compensates the prefactor \/n in (7.2).

The single integral takes the form

! / (Hda=ay) g, _ SB(AT = Ay) Az,AyeR. (7.5

Ky(v,y)dy = —=d (Ay) .

o m(Az — Ay)
Definition 7.2. The sine kernel is defined as
sin(z — y), v 40,
Ksine(x7 Z/) = 7T(QL' B y)

1
-, z = 0.
T
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(The value at = y is defined by continuity.)
This kernel is translation invariant, and is often defined with a single
argument, as Kgine(x — ).

The double integral has both contours in the “steepest descent” regime,
which means that the main contribution is

) eM(ReS(zer)—Re S(zer))  copst
const - ~

vn vn
At this rate, the double integral over the new contours does not contribute
to the asymptotics of the correlation functions. Recall that the correla-
tion functions are expressed as finite-dimensional determinants of the kernel
K,(z,y), and the error O(n~1/?) is negligible in the limit n — 4o00. This
is because the main term comes from the single integral, which does not

vanish.
We have established the following result:

Proposition 7.3 (Bulk asymptotics at X = 0). The correlation kernel K,
of the GUE has the following asymptotics close to zero as n — +00:

I 1 e Ax Ay
im —K, | —,—=
n—o0 \/ﬁ \/ﬁ \/ﬁ

Consequently, the eigenvalues of the GUE converge to the sine process deter-
mined by the sine kernel (Definition 7.2), in the sense of finite-dimensional
distributions.

) = Kgine (Az, Ay), Ax, Ay € R.

Remark 7.4. Beyond X = 0, the local correlations are essentially the
same, up to rescaling of the real line by a constant factor (depending on the
semicircle density). See Problem 7.5.1.

7.1.5 Real critical points: |X| > 2, “large deviations”

For X2 > 4, both solutions (7.3) are real. Let us assume X > 2, the case
X < 2 is similar. For X > 2, both solutions are positive. Label these
solutions as

X+VXZ—14 X —VX?—4

Zy = > o= ———F > S0 that 2,2z =1.

A straightforward check reveals that z; >1 and z_ <1 (for X > 2). Note
that S”(z) = 1 — 22, which is positive for z; > 1 and negative for z_ <
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1. Thus, the critical points z; and z_ are a local minimum and a local
maximum. A crucial observation is that

S(z4) < S(z2).

One can deform the z integration contour to pass through z_ and the w
contour to pass through z;,. Then, on these contours, one can show that

Re S(w) —Re S(z) < 0.

According to the steepest descent ideology, we see that the main exponential
behavior of the double contour integral is

exp{n(ReS(zy) —ReS(z_))} = 0(e ™) |X| > 2. (7.6)

Here §(X) > 0 for | X| > 2, and 6(X) — 0 when | X| — 2.

The outcome (7.6) reflects the fact that the Wigner semicircle law places
all eigenvalues inside the interval | X| < 2. The probability to see even a
single eigenvalue outside [—2,2] is exponentially small.

This exponential decay corresponds to a large deviation regime. Indeed,
if at least one of the diagonal entries of the matrix is unusually large, this
corresponds to the maximal eigenvalue to get outside the interval [—2,2].
See also Problem 7.5.2.

7.1.6 Double critical point: |X| =2, “edge”

Throughout the subsection, we assume that X = 2. The case X = —2 is
symmetric.

When X = 2, the two solutions in (7.3) merge into a double critical
point z. = 1. We have

S'(1) =0, S"(1) =0, S"(1) = 2.

Thus, the usual quadratic approximation fails and one must expand to third
order. Writing
z=14u, w=14+wv,

with u, v small, we have

SWG(” W+ Oty = S(1) + 1;3 +O®ub),

and similarly for S(1 4 v). Hence, the difference in the exponents becomes

S(1+u) = S1) +

’1)3—’LL3

S1+v)—8S(1+u)= + O(u* +v*).
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To capture the correct asymptotics, we rescale the local variables by

setting
U %4

=~ VT s
so that 5 5
Ve-U
n|S(1+v)—S(1 —i—u)} =—5 + O<n71/3).
Moreover, the correct edge scaling for the spatial variables is obtained by
writing

z=2yn+ 1/6, y=2vn+ 1/6, &neR.

We have

n(stw) - ) = -+ 20

3

The terms n'/3(¢ —n) are harmless as they can be removed by conjugation.

The region plot of Re S(z) — ReS(1) (shown in Figure 7.3) makes sure
that we can deform the z contour so that it passes through z.. = 1 as the
new U contour at the angles :l:%7r (where Re U? > 0), we can deform the w
contour so that it passes through z., = 1 as the new V contour at the angles
+7% (where Re V3 < 0). This will ensure the convergence of the new double
integral.

YU~V + O(n*1/3>.

Figure 7.3: The plot of the region Re S(z) — Re S(1) > 0 for X = 2.

Thus, we have shown that under the rescaling, the GUE correlation
kernel K, (z,y)dy converges to a new kernel.

Definition 7.5. Define the Airy kernel on R by

jus ) U3
1 300 e? 300 — }
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For another formula for the Airy kernel which does not involve integrals, see
Problem 7.5.3.

Proposition 7.6. We have

.1 £ n
nh_)ngo WKH (2\/ﬁ+ 176" 2v/n + W> — Kai(&,n).
Consequently, the eigenvalue statistics at the edge of the spectrum converge
to the Airy point process, in the sense of fine-dimensional distributions.

7.1.7 Airy kernel, Tracy—Widom distribution, and conver-
gence of the maximal eigenvalue

Let us make a few remarks on the asymptotic results of Proposition 7.3
and ??7. First, a rigorous justification of convergence of contour integrals
requires some estimates on the error terms in the steepest descent analysis,
but these estimates are mild and not hard to obtain.

Second, the GUE has the maximal eigenvalue Ap,q;. It is reasonable to
assume that the Airy process also (almost surely) admits a maximal point
(usually denoted by a1), and that A4, converges to a; under appropriate
rescaling:

lim 18 (Amaz — 2v/7) = ar. (7.7)

n—o0

This is indeed the case, but to show (7.7), one needs to show the convergence
in distribution:

lim P<n1/6(Amm —2vn) < x) = P(ay < ). (7.8)

n—oo
Both events (7.8) are so-called gap probabilities, for example,
P(a; < x) = P(there are no eigenvalues in the interval (z,00)),

which is expressed as the Fredholm determinant

0 (_1)m 00 00 00 m
det (1 — Kai) (pooy = 1+ dyy [ dyz--- [ dym det Kai(yi,y))-
m=1 z z z b=l

m!
(7.9)
Thus, to get (7.8)), one needs to show the convergence of sums like this
for the GUE kernel to the corresponding sums for the Airy kernel. This is
doable, but tedious.
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Moreover, to get convergence in distribution of random variables, one
would also have to argue either tightness, or independently show that (7.9)
defines a cumulative probability distribution function in x:

Fg(l‘) = det (1 — KAi) (7.10)

(2,00) *

The distribution (7.10) is known as the GUE Tracy-Widom distribution.
The subscript 2 indicates that 8 = 2. There are distributions F for all
beta, most notably, the GOE and GSE distributions. The classical dis-
tributions Fi, Fy, Fy also appear as fluctuation distributions in interacting
particle systems, while other beta values do not quite appear in the particle
systems domain.

More details may be found in the original papers [TW93], [For93], [TW94].

7.1.8 Remark: what happens for general 37

e The determinantal structure exploited above is special to the § = 2
case. In contrast, for 5 =1 (GOE) and 8 = 4 (GSE) the eigenvalue
correlations are expressed in terms of Pfaffians rather than determi-
nants. This happens before and after the scaling limit.

e Earlier attempts to extend the 8 = 2 techniques were determinantal.
For example, one can replace the squared Vandermonde [ ], _;(z; —x;)?

with 5 5
2 2
[T — 2@ = 2077
1<j
This is known as the Muttalib—Borodin ensemble [FW17], and the ker-
nel can be computed in a similar way using (bi)orthogonalization.

e Local eigenvalue statistics of general S-ensembles converge to the so-
called general B sine process and general B Airy process in the bulk
and at the edge, respectively. Detailed analyses of this convergence can
be found in [RRV11], [VV09], [GS18], and the literature referenced in
the recent work [GXZ24].

7.2 Cutting corners: setup

We begin a new topic, which will be the main focus for this and the next
week.

In random matrix theory, one often studies the entire spectrum of an
n x n matrix ensemble such as the Gaussian Unitary Ensemble (GUE), the
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Gaussian Orthogonal Ensemble (GOE), or, more generally, [-ensembles.
However, it is also natural to examine the spectra of principal minors of
such matrices.

When we say “cutting corners,” we typically refer to extracting a top-left
k x k submatrix (or corner) out of an n x n random matrix H and then
looking at the interplay among the eigenvalues of all corners k& = 1,...,n.
This forms a nested family of spectra, often described by interlacing (or
Gelfand-Tsetlin) patterns.

The GUE corners process is a classical example of this phenomenon. If
H is an n x n GUE matrix, then the top-left £ x k corners (for 1 < k < n)
have jointly distributed eigenvalues that exhibit a determinantal structure.
We will employ the technique of polynomial (characteristic function) equa-
tion and then loop equations to study global limits (note that they are not
suitable to get local limits like sine and Airy processes).

So far, we have the following access to eigenvalues and corners:

1. For 8 = 1,2,4, we have the actual matrices, and can cut the corners
in the usual way.

2. For general 8, we have the joint eigenvalue distribution with the in-

teraction term [[,_; [z; — x;|P, which is an interpolation.

3. For general 3, we also have the Dumitriu-Edelman tridiagonal model
[DE02].

Cutting corners from the tridiagonal matrix is not a good idea, for many
reasons. The simplest might be that the (n—1)x (n—1) corner eigenvalues do
not have the same distribution (up to changing n) as the general 3 ensemble
eigenvalues. Maybe we might cut the lower right corners? Well, this is
not a good idea either, because the total number of random variables (the
“noise”) in the tridiagonal matrix is O(n), while the number of eigenvalues
of all corners is O(n?).

7.3 Corners of Hermitian matrices

7.3.1 Principal corners

Let H be an n x n Hermitian matrix. For each 1 < k < n, define the top-left
k x k corner H*) by

H® = [Hw] 1<i,j<k’
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Since H is Hermitian, each H®) is also Hermitian. Let

AB 5 B 5 s 30

denote the eigenvalues of H¥). Then the collection
(k) . :
(A7 1<i<k<n}

is called the corners spectrum (or minor spectrum) of H. When H is random,
this triangular array of eigenvalues becomes a random point configuration
in the two-dimensional set {1,...,n} x R.

7.3.2 Interlacing

A fundamental feature of Hermitian matrices is that the eigenvalues of cor-
ners interlace with the eigenvalues of the full matrix:

Proposition 7.7. If vy > --- > v, are the eigenvalues of H itself (i.e., the
full n x n matrixz), and py > -+ > pnp—1 are the eigenvalues of H™=D  then
we have:

V1 2 U1 2 Vg 2 g 2 ... 2 flp—1 = Vp.

Proof. One can prove the statement using the Courant—Fischer (min-max)
characterization of eigenvalues, often referred to as the variational princi-
ple. Recall that for an n x n Hermitian matrix H with ordered eigenvalues

V1 > vy > -+ > Uy, the j-th largest eigenvalue v; admits the variational
characterization
. r*Hx . *Hx
vj = max min = min max ,
VCF*  zeV z*x W CF™ zeW x*x
dim(V)=j z#0 dim(W)=n—j+1 x#0

where F is R, C, or the quaternions (depending on 8 = 1,2, 4, respectively).
We leave this as Problem 7.5.4. 0

The same interlacing property holds for real symmetric matrices (8 = 1),
and in the case 8 = 4. Therefore, it is natural to require this property for
all B-ensembles.

7.3.3 Orbital measure

It is natural to consider an extended setup, and take the matrix H to not
just be GUE, but instead fix its eigenvalues. Let

H =UAUT, A = diag(\1, ..., \n),
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where A is fixed and U € U(n) is Haar (uniformly) distributed. Denote the
set of all such H by Orbit(A), A= (A1,...,\p) ER™", Ay > --- >\,

Then, if we understand the distribution structure of all corners of a
random H € Orbit(\), we can then “average over” the GUE eigenvalue
ensemble distribution of A to get the GUE corners process.

Remark 7.8. The setting with orbits presents a bridge into “asymptotic
representation theory”. Namely, as n — oo, how does the corners distri-
bution look like? We may ask for a characterization of all the ways how
A = ()\gn) > ... ASL")) goes to infinity, in such a way that the corners spec-
trum converges on all levels k = 1,..., K for arbitrary K (independent of
n). This problem was solved in [OV96]. More direct formulas for projections
of orbital measures were obtained in [Ols13].

7.4 Polynomial equation and joint distribution

7.4.1 Derivation

Fix A = (A > ... > \,). Let H € Orbit(\) be a random matrix (in the
case 3 = 2, but the proof works for § = 1,4 as well). Let pi,...,up—1 be
the eigenvalues of the (n — 1) x (n — 1) corner H™~1).

Lemma 7.9. The distribution of p1, . .., in—1 8 the same as the distribution
of the roots of the polynomial equation
n
&i
=0 7.11
> =50 (7.11)
=1

where & are i.i.d. random variables with the distribution X%-

Proof. p1,...,un—1 are the roots of the following equation with the deter-
minant of order n + 1:

0

U diag(\)Ut I T 0
det< iag() _ZN”>:0, oo |
v 0 :

0

1

Indeed, expanding the determinant along the last row, we get the (n — 1)th
determinant, which corresponds to cutting the corner.
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.i.
Next, multiply the determinant by <U 0> on the left and (U 0) on

0 1 0 1
the right:
; _ T
dot (dlag()\) zIN wu > —0,
U 0
where uf = UTvT is the last row of Uf. The determinant now can be
expressed as
det = — A — .
R | PR

Since u is a row of a Haar unitary matrix, it is distributed uniformly on
the unit sphere in C". However, we can identify it with a normalized vector
from a rotationally invariant measure on C", the best of which is Gaussian.
This completes the proof. ]

Remark 7.10. Lemma 7.9 provides another proof of the eigenvalue inter-
lacing property. Indeed, assume that all & are rational. Then equation
(7.11) is essentially P'(z) = 0, where P(z) is a product of powers of the
(z—A;)’s (the powers depend on the &;’s). As the roots of the derivative of a
polynomial interlace with the roots of the polynomial, we get the interlacing
property.

7.4.2 Inductive nature of the transition

Note that when we fix A = (A > ... > \,) and get random p = (g >
... > pin—1) by solving (7.11), we can then fix p and get random v = (11 >
... >Vp_2), and so on. Here, v corresponds to the (n —2) x (n — 2) corner

of H. Indeed, we can condition on i, and conjugate H again by a unitary

!/
UO (1)>, where U’ € U(n — 1) is Haar distributed.

Since U € U(n), this extra conjugation does not change the distribution of
H € Orbit(\), but it allows us to treat the passage from p to v on the same
grounds as the passage from A to u.

matrix of the form U = <

Remark 7.11. In more detail, since the homogeneous space U(n)/U(n—1)
can be identified with S$?"~! the (2n — 1)-dimensional real sphere, we can
construct a Haar-distributed unitary matrix U € U(n) by first picking a
Haar-distributed unitary matrix U’ € U(n — 1), and then picking a random
point on the sphere S?"~!. Restricting H to C"~! fixes the last component
on the sphere (up to a complex phase), but the eigenbasis of the restriction
H®=1 is still Haar distributed, but now in U(n — 1).
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This implies that in order to understand the full corners process, it is
enough to understand the transition from A to u, where A is fixed, and p is
obtained by solving (7.11).

7.4.3 Case =00
In the limit 8 — +o0, the X% distribution obeys the law of large numbers:
X5

— =1, B — +00.

B

Thus, the equation (7.11) becomes deterministic:

Denote

P(z) = H(z — ). (7.12)
Then

Proposition 7.12. The passage from A = (A1 > ... > \,) to p = (ug >
. > lp—1) in the limit as f = oo is deterministic, and it the same as
the passage from the roots of the polynomial P(z) (7.12) to the roots of its

deriwative P'(2).

7.5 Problems

7.5.1 General bulk case

Perform the asymptotic analysis of the correlation kernel as in Section 7.1.4,
but in the general case —2 < X < 2.

7.5.2 Large deviations

Let W,, be an n x n Wigner real or Hermitian matrix with finite variance
entries. Assume that the matrix is normalized so that the variance of each
diagonal entry is 1.

Assumption [BBP05]. If a Wigner matriz is normalized to have diago-
nal variance 1, then a rank 1 perturbation of magnitude ¢ > 0 is sufficient to
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shoot the maximum eigenvalue outside the support of the Wigner semicircle
law. (For a simulation of this phenomenon, see here.)

Consider the following large deviation event. For a fixed n > 0, let
E, = {Hi € {1,...,n} such that W;; > n}.

Under the above assumption, if for some ¢ the diagonal entry W;; is unusually
large, it will push the maximal eigenvalue of W,, outside the bulk.

1. Assuming that the entries are Gaussian, lower bound the probability
of the event E,, , for large n.

2. Assuming another tail behavior of the diagonal entries (exponential
or power-law tails), use the limit theorems for maxima of independent
random variables to generalize the lower bound of P(E, ;).

7.5.3 Airy kernel
Define the Airy function by

1 R . 1 00 U3
Ai(€) : /‘éww%%U:A(m<+80dU

:27T T 3

This integral converges, but only conditionally. To improve convergence,
one should instead integrate along a complex contour, from €6 00 to 0 to
e’ 0o.
Show that
Ai(€) Ai'(n) — Ai(n) Ad'(€)
= '

Note that this expression is parallel to the sine kernel,

KAi(éa 77) =

sin(r —y)  sinxcosy — coswsiny
m(z —y) m(z —y)
These correlation kernels are called integrable [ITKS90].
Hint for the problem: observe that

, cosz = (sinz)’.

. . i 0 0 . .
exp{—izx +iwy} = Ty \o: + 90 ) &P {—izz +iwy},

and use integration by parts in Ka;(&,n) from Definition 7.5.

7.5.4 Interlacing proof
Finish the proof of Proposition 7.7.


https://lpetrov.cc/simulations/2025-01-28-bbp-transition/

Chapter 8

Cutting corners and loop
equations

8.1 Cutting corners: polynomial equation and dis-
tribution

8.1.1 Recap: polynomial equation

Recall the polynomial equation we proved in the last Chapter 7. Fix A\ =
(A1 > ... > Ap). Let H € Orbit(\) be a random Hermitian matrix defined
as

H = Udiag(\1, ..., \) U,

where U is Haar-distributed unitary matrix from U(n). This is the case
8 = 2, but the statement holds for the cases f = 1,4 with appropriate
modifications. Let p1,...,pu,—1 be the eigenvalues of the (n — 1) x (n — 1)
corner H("=1),

Lemma 8.1. The distribution of p1, . .., in—1 8 the same as the distribution
of the roots of the polynomial equation
n
&
=0 8.1
P vl (8.1)
=1

where & are i.i.d. random variables with the distribution X%-

Recall also that this passage from A to p works inductively, and the
distribution of the next level eigenvalues v = (v1 > ... > v,_9) is given by
the same polynomial equation, but with A\ replaced by u. In this way, we

125
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can define a Markov map from A\ to u, which is then iterated to construct
the full array of eigenvalues of the corners of H.

For 8 = oo, this map is deterministic, and is equivalent to successive
differentiating the characteristic polynomial of H.

8.1.2 Extension to general [

We extend the polynomial equation to general 3, by declaring (defining)
that the general § corners distribution is powered by the passage from A =
AM>...>2 ) topu=(u1>...> pin_1), where p solves (8.1) with &; i.i.d.
X%‘ In this way, p interlaces with A. For 8 = 1, 2,4, this definition reduces
to the one with invariant ensembles with fixed eigenvalues .

8.1.3 Distribution of the eigenvalues of the corners

Let p be obtained from A by the general 8 corners operation.

Theorem 8.2. The density of u with respect to the Lebesque measure is
given by

n—1 n
LND2) T =m) ITIL =227 T i =27

Proof. Let p; =&;/ 2?21 &;. It is well-known' the joint density of (¢1, ..., ¢n)
is the (symmetric) Dirichlet density

Mwﬁﬂ—l e wg/zfld’wl coodwp—1

r(s/2m -
(note that the density is (n — 1)-dimensional).

We need to compute the Jacobian of the transformation from ¢ to p, if
we write

Zn: pi LS (= — )
—z-N L=

and compute (as a decomposition into partial fractions):

Vo = Hzﬂz_ll(/\a — 14i)
O Tlizaa =N

1See Problem 8.4.3.
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Therefore,

n—1

Opa iy Qa=pm) 1y 1 (39)

8/% Hi;éa(/\a - Az) My — Aa
The Jacobian is essentially the determinant of the matrix 1/(pup — Ag), which
is the Cauchy determinant (Problems 8.4.1 and 8.4.2). The final density is
obtained from the symmetric Dirichlet density, but we plug in w = ¢, and
also multiply by the inverse of the Jacobian determinant (8.2). After the
necessary simplifications, this completes the proof. ]

Corollary 8.3 (Joint density of the corners). The eigenvalues \k);, 1 <
Jj <k <mn, of a random matriz from Orbit(A\) form an interlacing array,
with the joint density

n ®) ®) 2-8 k+1 k
<[ 1I <)‘j _)‘z’> IT11

k=11<i<j<k a=1b=1

(k) B/2—1

/\((lk+1) _ Ab

For 5 = 2, all factors disappear, and we get the uniform distribution on
the interlacing array. This is the uniform Gibbs property which is important
for other models, including discrete ensembles.

8.2 Loop equations

Let us write down the loop equations for the passage from the eigenvalues
A to the eigenvalues pu. These loop equations are due to [GH24] by a limit
from a discrete system (related to Jack symmetric polynomials). Note that
despite the name, these are not equations, but rather a statement that
some expectations are holomorphic. We stick to the random matrix setting,
and present a formulation and a proof given by [Gor25].

8.2.1 Formulation

Theorem 8.4. We fixrn=1,2,... andn+1 real numbers Ay > -+ > Apt1-
For >0, consider n+ 1 i.i.d. X% random variables &; and set

&i :
Z?:l &
We define n random points {p1, ..., un} as n solutions to the equation
n+1

> - I_”A = 0. (8.3)

=1
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Take any polynomial W (z) and consider the complex function:

_e|T WL G =) [ SR B2-1 g1
fw(z) =E Hexp(W(uJ))H?:1(Z_Mj) w'( )—1-; Y +;Z—Mj

(8.4)

j=1
Then fw(z) is an entire function of z, in the following sense:

o For z € C\ [Aut1, 1], the expectation in (8.4) defines a holomorphic
function of z.

e This function has an analytic continuation to C, which has no singu-
larities.

Remark 8.5. Note that for z in [Ay41, A1], the integral determining (8.4)
might be divergent, and, therefore, analytic continuation is the proper way
to define fy(z), z € [Ant1, A1)

Corollary 8.6. We have

n+1
Here fo means fyy with W = 0.
Proof. This is obtained by sending z — oo in (8.4). O

8.2.2 Proof of Theorem 8.4 for § > 2

Theorem 8.4 remains valid for 5 > 0, but we only prove it for 8 > 2 here.
We also assume that \; > ... > \,.

We begin by observing that for z € C\ [A\y41,A1], the expectation in
(8.4) is well-defined and holomorphic in z. This follows since for such z, the
denominators z —\; and z — p1; are bounded away from zero with probability
1. The key challenge is to show that fy(z) can be analytically continued to
an entire function. Potential singularities of fyy(z) are inside the intervals
(Ni+1,A1). We will show that these singularities do not actually occur.

Consider a specific interval (A2, A\1). We need to show that fi(z) has no
singularities in this interval. From Theorem 8.2, the probability distribution
of p=(u1,..., 1) has density proportional to:

n n+l

IT = s TTTT I = 2172

1<i<j<n i=1j=1
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Let us analyze the function in (8.4). For z € (A2, A1), we need to demon-
strate that the expectation

is holomorphic. This expectation is an (n — 1)-fold integral over p1, ..., fin.
For z € (A2, A1), we will show that the one-dimensional integral over p; is
already holomorphic, and the remaining integrals are over domains which
do not encounter singularities in z. We need to consider the integral

A1 n ntl . .
II Gu=m) JTTIC M‘—Ai)B/Q”HeW(W)M
A2 1§i<j<n j=1li=1 =1 szl(z — Nj)

n+1 n
" +§;5/2‘1 T e
j=

Note that (here we are using the fact that 5 > 2)

A1 n n+l ‘
0:/ d,uli H (Mi_ﬂj)H ( _)\ B/2— 11—.[6 M])M

A2 O 1<i<j<n j=11i=1 j=1 HJ 1(z = )

!

Subtracting this expression from our original integral (8.5) and noting
that

n+1 n n n+1
W'(z +Zﬁ/2_1 Zz_l -1 i .+Z/8/2__)\1+W/(N1)+Z_1

=1 Hj = H1— M5 T M

has zero at z = u1, we conclude that our integral has no singularity at w1,
and therefore no singularities in the [Ag, A\1] interval. This completes the
proof of Theorem 8.4 for 5 > 2.
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8.3 Applications of loop equations

The loop equations provide a powerful tool for analyzing the spectral prop-
erties of random matrices through their eigenvalue distributions. Let us
derive an equation for the Stieltjes transform of the empirical measures.

8.3.1 Stieltjes transform equations

Starting from Theorem 8.4 with W = 0, we have:

[T — ) [=8/2-1 & 1 (n+1)8
D e e = —1. 8.6
ANEETT A Py e Dy 2 (&0

Let us introduce the empirical Stieltjes transforms:
oA
n

Ga(z) =
Gu(z) =

1 1
mA R My

We also define the “logarithmic potentials” (indefinite integrals of the Stielt-
jes transforms):

n+1

/G)\(z) Zln z—
/Gu(z)dz = Zln(z — ).
j=1

We understand the integrals up to the same integration constant (and branch),
so the exponent of the difference yields the original product:

Hf( VECED)

We can rewrite equation (8.6) as

[exp< (/GA i~ [ Gue) )) <<§—1>G,\(Z)+Gu(2)>}=§+i
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8.3.2 Asymptotic behavior

Equation (8.7) can be reinterpreted in terms of a time evolution of eigenvalue
distributions. This perspective offers significant insights into the asymptotic
behavior of the corners process.

If we think of A as configuration at time t = 1 and p as configuration at
time t =1 — %, then denoting the general time parameter as ¢t and setting
G = G1, G, = G|_1, we obtain a continuous time evolution of Stieltjes
transforms. (And siminlarly for all ¢, of course.)

As n — o0, equation (8.7) transforms into:

U

This implies

0

g / Gi(z)dz 4+ InGy(z) = 0.
Taking the derivative with respect to z, we get:

9 10
a At e es

This is the inviscid Burgers equation, a fundamental nonlinear PDE in
fluid dynamics — but with complex z. The complex Burgers equation has
appeared in descriptions of limit shapes of models in statistical mechanics,
such as lozenge tilings [KOO07].

Gi(2) =0. (8.8)

Remark 8.7. We see that the Burgers equation (8.8) does not depend on
B, which is expected. Indeed, for example, GSE eigenvalues have the same
Wigner semicircle law as 8 = 2, up to an overall rescaling.

8.3.3 Example: GSE and the semicircle law
The Stieltjes transform of the semicircular law is given by:

G(z):/2 ! 47_332(&::}(2— z2—4>.

z—x 2w 2
-2

We take this as the function G¢(z) for t = 1. Then, for each 0 < ¢ <1, the
GpE solution should be

[nt]

1 1
L3 N (VD)
- ; ST —tGVI(2),
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where
GO (2) = z— V2% — 4c?
T 22 7

is the Stieltjes transform of the semicircular law on [—2¢, 2¢].

Lemma 8.8. The function Gy(z) ==t GV (2) satisfies the Burgers equation
(8.8).

Proof. Straightforward verification. O

8.4 Problems
8.4.1 Cauchy determinant
Prove the Cauchy determinant formula:

( 1 > [Licj(i —2)(vi —yj)
det = .
Ti=Yj/ 1<ij<n I (i = yj)

8.4.2 Jacobian from n — 1 to n dependent variables

Explain how the factor H?:_ll [Tj= l#i — Aj| appears from the Jacobian of
the transformation from ¢ to u (8.2), even though d¢,/0uy is defined for
a=1,....,n,b=1,...,n—1, but the ;’s are not independent.

8.4.3 Dirichlet density

Find in the literature or prove on your own the first statement in the proof of
Theorem 8.2 about the symmetric Dirichlet density arising from normalizing
the &;’s to ¢;’s.

8.4.4 General beta Gaussian density and cutting corners
Show that if A\1,..., A\,+1 have the Gaussian beta density of order n + 1,

n+1

—B\2
S IS
1<i<j<n+1 i=1
and p1,...,u, are obtained from Aj,..., A\ 41 by cutting the corner (so

have the conditional density as in Theorem 8.2), then ug, ..., u, have the
Gaussian beta density of order n.
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8.4.5 General $ Corners Process Simulation

This problem explores computational aspects of the general 8 corners pro-
cess.

(a) Write code for generating a sample from the distribution of 1 = (1, ..., fin—1)
given A = (A1,...,\,) for arbitrary 5 > 0, using the polynomial equa-
tion characterization.

(b) Let A = (n,n —1,...,2,1). For n = 7, compute (numerically) the
expected values E[p;] for each ¢, when 5 =1,2,4, and 10. Describe the
behavior as [ increases.



Chapter 9

Loop equations and

asymptotics to Gaussian Free
Field

9.1 Recap

9.1.1 (Dynamical) loop equations

Theorem 9.1. We fixrn=1,2,... andn+1 real numbers Ay > -++ > Apt1-
For B >0, consider n+ 1 i.i.d. X% random variables & and set

&
Y

We define n random points {p1, ..., un} as n solutions to the equation

w; = 1<i<n+1.

n+1

szi& =0. (9.1)

=1

Take any polynomial W (z) and consider the complex function:

z) = nex . M s nﬂﬁ/?—l "1
fw(z) =E jHl p(W(uJ))Hzpzl(Z_Hj) (W( )+; " +; 1.
(

Z = Hy
9.2)
Then fw(z) is an entire function of z, in the following sense:

o For z € C\ [Aut1, 1], the expectation in (9.2) defines a holomorphic
function of z.

134
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o This function has an analytic continuation to C, which has no singu-
larities.

We proved this statement for 5 > 2, but it is valid for all g > 0.

9.1.2 Loop equations for W =0
When W = 0, the loop equation (9.2) becomes

fol2) = (n+1)8 Y
2
SO
I —N) [S28/2-1 & 1 (n+1)8
E | 1=l > +)° =" 1
Hj:1(z_ﬂj) i—1 z—= A =T H 2
Recall that we defined
n+1 n
1 1 1
G = — -
A(2) ngz—)\i’ n;z

We also define the “logarithmic potentials” (indefinite integrals of the Stielt-
jes transforms):

n+1

/G)\(Z) Zln z— i), /G’M(z)dz: %Zln(z—,uj).
j=1

We understand the integrals up to the same integration constant (and branch),
so the exponent of the difference yields the original product:

firs = = (+ ([0 [e))

We can rewrite the loop equation as:

oo (Josom fosos)) ((3-)ox00ae)]=5:1 (3
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Figure 9.1: Corners process for n = 300, 8 = 1, with n/10 points at 0, n/10
points at 1, and 8n/10 points at 2 on the top level.

9.1.3 The full corners process

Assume n is going to infinity, and we fix a sequence of top-level eigenvalues
/\§n), 1 < j < n, growing in some way. This sequence can be random (like
GPE rescaled to have eigenvalues in a bounded interval) or deterministic
(for example, A(™ has n/10 points at 0, /10 points at 1, and 8n/10 points
at 2, see Figure 9.1).

Denote the eigenvalues of the k& x k beta corner (that is, obtained by
successively solving the polynomial equation (9.1) n — k times) by )\;k),
1<j <k Asn— oo, we postulate that

The empirical distribution of )\gk) converges to some determin-
istic probability measure m;, where k/n — t € [0,1]. Conse-
quently, the Stieltjes transform G, (z) converges to Gy(z), for

z in a complex domain outside of the support of m;.

Note that we do not assume the scaling of the )\g-k)’s, for convenience.

d
Denote by G¢(z) = my(dz)
R #R—X

the Stieltjes transform of the measure m;.

Proposition 9.2. The functions Gy(z) satisfy the complex Burgers equation

0 1 0
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Proof. We have in (9.3), if X and p live on levels ¢ and ¢ — respectlvely
10 g B 10 B
Gr:)-Gu) ~ 1 56l (5 1) GG = § Gilo)- 1 £.Gl) = Gulo)

Due to the concentration assumption, we can ignore the expectation. Then,
taking the logarithm of (9.3), and differentiating with respect to z, we get
the Burgers equation. O

9.1.4 Example: GSE and the semicircle law

The Stieltjes transform of the semicircular law is given by:

2
_ 2 1
/ xda;:f<z— 22—4>.
Z—T 2
~2

We take this as the function G¢(z) for t = 1. Then, for each 0 < ¢ <1, the
GpE solution should be

11 (Vi)
- - t
nzz )\lqmj) — GV (2),

=1~

where
. z— V2% —4c?
G( )(Z) = 262 ’

is the Stieltjes transform of the semicircular law on [—2¢, 2c].

Lemma 9.3. The function Gi(z) = tG(\/E)(z) satisfies the Burgers equa-
tion.

Proof. Straightforward verification. O

9.2 Gaussian Free Field

The Gaussian Free Field (GFF) is a fundamental object in probability the-
ory and mathematical physics. Roughly speaking, it can be viewed as a
multi-dimensional analog of Brownian motion: instead of one-dimensional
“time,” the underlying parameter space is a multi-dimensional domain (of-
ten two-dimensional). In one dimension, the GFF reduces to an ordinary
Brownian bridge (or motion). In higher dimensions, it becomes a random
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generalized function (a “distribution”) whose covariance structure is gov-
erned by the appropriate Green’s function of the Laplacian. Below we pro-
vide an introduction, starting from finite-dimensional Gaussian vectors and
culminating in the GFF as a random distribution.

9.2.1 Gaussian correlated vectors and random fields

Recall that an n-dimensional real-valued random vector X = (X1,...,X,)
is called Gaussian if every linear combination

a1 X+ Xy,

of its components is a univariate Gaussian random variable. The law of
such a vector is completely determined by its mean vector m € R™ and its
covariance matrix X € R™ ™. The density function, for invertible ¥, is

1 _
fx(z) = (27r)”detZeXp<_§(I_m)TZ 1(az—m)).

For simplicity, we will assume that m = 0 (the centered case).

9.2.2 Gaussian fields as random generalized functions

A natural extension from finite-dimensional Gaussian vectors to infinite-
dimensional settings leads us to Gaussian fields. Informally, a Gaussian
field is a collection of Gaussian random variables indexed by points in some
space.

For a domain D C R? we might wish to define a random function
® : D — R such that for any finite collection of points z1,...,z, € g, the
vector (®(z1),...,P(z,)) is a Gaussian vector. However, such a random
function may not exist as a proper function in the usual sense. The reason
is that we would like to consider analogues of linear combinations of the
form

B(f) = /D D) f(x) de, (9.4)

For example, if we wish the vector (®(x1),...,®(x,)) to have independent
components, we would need to assign a value to each point in D. This
means that the hypothetical function ® would be too irregular, and even
non-measurable, and the integral (9.4) would not be well-defined.
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Instead, for the field with independent values at all points, we would
like ®(f) to be normal with mean zero and variance (paralleling the finite-
dimensional story)

Var (@(9) = W) = [ 7)o

So, Gaussian fields (in particular, our topic, the Gaussian Free Field)a are
defined as random distributions, not as functions. That is, rather than
assigning a value to each point, we assign a random value to each test
function f in some appropriate space via (9.4).

The covariance structure of the mean zero Gaussian random variables
O(f1),...,P(fn) is given by a certain bilinear form determined by the do-
main D.

9.2.3 Concrete treatment via orthogonal functions

Let us now construct the Gaussian Free Field more concretely. Consider
a bounded domain D C R? with smooth boundary. Let {f,}2; be an
orthonormal basis of L?(D) consisting of eigenfunctions of the Laplacian
with Dirichlet boundary conditions:

{—Afn = Anfn inD, 05)

fn=0 on 9D,

where 0 < A\ < Ay < ... are the corresponding eigenvalues.
We can now define the Gaussian Free Field on D as:

Qp

¢ = ——In; (96)

where {a;,}72 ; are independent standard Gaussian random variables. This
series does not converge pointwise, but it does converge in the space of
distributions almost surely.

For any test function g € C§°(D), we have:

Qp

#g) = [ d@g@)de =3 S [ f@o@an @0
n=1 n

which is a well-defined Gaussian random variable.
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9.2.4 Connection to Brownian bridge

The Gaussian Free Field in one dimension is closely related to the Brown-
ian bridge. Consider the interval [0, 1] with the Dirichlet Laplacian. The
eigenfunctions are f,(r) = v/2sin(nrx) with eigenvalues A\, = n?n2. The
Gaussian Free Field on [0, 1] can be expressed as:

=2 Z z—; sin(nmx). (9.8)
n=1

This series representation converges to a continuous function, which is pre-
cisely the Brownian bridge on [0,1]. The Brownian bridge is a Gaussian
process B; with mean zero and covariance function:

E[BsB;] = min(s,t) — st. (9.9)

The key difference between the one-dimensional and higher-dimensional
cases is that in one dimension, the Gaussian Free Field is a continuous
function, whereas in dimensions two and higher, it is a genuine distribution
(not a function). This reflects the fact that Brownian motion is a contin-
uous path in one dimension but becomes increasingly irregular in higher
dimensions.

9.2.5 Covariance structure and Green’s function

The covariance structure of the Gaussian Free Field is intimately connected
to the Green’s function of the Laplacian. For test functions f,g € C§°(D),
we have:

E[®(f)B(g)] = E Z Onom / ful@) () de /D f()o(w) dy| (9.10)

=35, [ s /D Fuw)aly) dy. 0.11)

Define the Green’s function Gp(x,y) for the Dirichlet Laplacian on D as
the solution to:

{_AxGD(‘T7y) = (5(37 - y) for z,y €D, (912)

Gp(z,y) =0 for x € 9D or y € 9D.
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The Green’s function has the eigenfunction expansion:
o fa(@) fu(y)
Gp(z,y) = T; RV (9.13)

Using this, we can rewrite the covariance as:

mwwwzéé@mmmm@mw. (9.14)

This relationship between the covariance of the GFF and the Green’s func-
tion is fundamental. It shows that the GFF can be viewed as a random
solution to the equation —A® = W, where W is white noise. Here the
white noise is the Gaussian field with covariance d(x — y) — the object
which is the correct way of constructing a Gaussian field with i.i.d. values
at all points.

9.2.6 The GFF on the upper half-plane

In the complex upper half-plane {Im z > 0} with R as the boundary, the
Green function has the form

1 1
G(z,w)=——In|z —w|+ —In|z —w|.
T T
The covariance is

B0 = [ [ 1P lduP 19w ).

9.3 Fluctuations

9.3.1 Height function and related definitions

Let us define the height function using the corners process {A§k): 1<57<
kE<n}:
h(t,z) = #{eigenvalues )\;WJ) which are < z}.

Recall that in our regime, we do not scale x. Throughout the following, we
will interchangeably use the parameters n and ¢ := 1/n.

Our goal is to understand the asymptotic behavior of the centered height
function

h(t,x) — E[h(t, )],
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defined inside the region of the (¢, ) plane. Note that in contrast with the
usual Central Limit Theorem, the fluctuations are not scaled by ¢!/2,
but rather converge to a certain object without any scaling. Note
that the law of large numbers is going to be

eh(t,x) — bh(t, z),

where h(¢, x) is the limiting height function (for a fixed ¢, this is the cumula~
tive distribution function of the measure m;). We will see that these unscaled
fluctuations are converging to a Gaussian Free Field. Thus, the unscaled
fluctuations are “just barely” going to infinity, while retaining nontrivial
and bounded correlations.

9.3.2 Main results on Gaussian fluctuations

Recall that our main assumption is that the distribution at the top row
converges (with a good control) to a deterministic measure my:

1 n
E Z 6)\571) — my.
=1

For example, in Figure 9.1, the measure m; has three atoms.
Denote the centered Stieltjes transforms by

Gi(2) == Ga(2) — E[GA(2)].

Theorem 9.4. Fiz an integer k > 1 and pick k pairs (ti,u,-), 1< <k.
Consider the random variables

5_1ék<[ntm (Z(ti,uz')), 1<i<k,

where z(-,-) is a conformal structure on the liquid region in the corners
process.t

Then, as € — 0, these k random variables converge (in the sense of mo-
ments, uniformly over (t;,u;) in compact sets) to a k-dimensional Gaussian

vector of mean zero. Their limiting covariances are

1

lim e 2K [ésflti (2(ti, us)) G-y, (2(t, u]))}

e—0

Ou,Ou; | |,

Z(T, Ul) — Z(T, U])

where T = min(t;, t;).

Tt exists, and can be characterized rather explicitly, but we will not go into details
here.
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Corollary 9.5. Again assuming b(z) = z for all z, fix an integer k > 0 and
real parameters
0<t;y <tg < -0 < < T,

along with real-analytic functions fi(x),..., fr(x) in a neighborhood of the
real axis. Define the random vector

k

(\/7? /lr(ti) filx) [h(ti, e ) E(h(ti,s—lx))}dx> ,

(ts) i=1

where [I(t;),r(t;)] contains the support of the t;-th slice of the corners process.
As e — 0, this random k-vector converges (in the sense of moments) to
a centered Gaussian vector, whose covariance is

- i % % awi(‘)w. [log(wl - w])] Fl(wz) Fj (w]) dw, Clw]’,
A Je,Je; !

where C; and C; are positively oriented contours enclosing the real interval
[U(ti), r(t;)] and [L(t;), r(t;)], respectively, inside their regions of analytic-
ity, and Fi(z) is such that f;i(x) = 0z[F;(x)].

9.3.3 Deformed ensemble

The rest of this section illustrates the beginning of the argument in [GH24],
but in our random matrix setting. In the interest of time, we are following
the main steps in a non-rigorous manner, (in particular, following [GH24,
Section 4.2]), and do not present a complete proof. The goal here is to
illustrate the main idea how the loop equation can be useful for analyzing
asymptotics.

This theorem is an asymptotic expansion of the Stieltjes transform of
the one-step transition from A to p. We assume that the support of A is in
[l,7]. Denote

n+1 n
M) = [ =), M) =[] - ).
i=1 Jj=1

Also assume that W(z) is fixed and nice, and that p; are distributed ac-
cording to a modified density, which includes W (z):

n n+l

% IT =m)ITIT 1w —2172 TI Ga= )P e

1<i<j<n i=1j=1 1<i<j<n+1 j=1
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From now on, all expectations will be over the W-modified density.
We aim to analyze the quantity

A% =E ﬁ(())] ’

which enters the loop equation. Moreover, the loop equation states the
holomorphicity of

n

(z) [ 1 1 1
H;(z)<nz _nzz—)\)]'

Y — s
j=1 Hj i=1

) ,B 1 n+1 5
C(z) = A(z) [:W'(2)+5 ; p—y

The first summand is the leading term, and the second summand will be
negligible. Indeed, it contains the difference of G, (z) and G\(2), and these
Stieltjes transforms are close to each other, so the difference is O(g).

9.3.4 Wiener-Hopf like factorization

Denote

B(z) = 2W'(2) + ?G)\(z).

Decompose B(z) using the Cauchy residue formula:

InB(z) = 1 yg lnB(w)dw_ 1 lnl’)’(w)dw7
w4

2mi w—z 2mi J, w—z

where w, is positively oriented and encloses [I,7] and z, while w_ is also
positively oriented and encloses [I, 7] but not z. Then define

hy(u) = ! 515 lnB(w)alw, h_(u) = ! 1nB(w)alw.

27 w—u 2m J, w—u

Thus, we get the Wiener-Hopf like factorization
B(z) = €h+(Z)€*h7(Z)’

where hy is holomorphic in a neighborhood of [/, 7], and h_ is holomorphic
in a neighborhood of oo, with behavior O(1/u) at infinity. The factorization
is valid in an annulus between the two contours w4 and w_.
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Figure 9.2: Positively oriented contours wy and w_ in the complex plane.

9.3.5 First order asymptotics of A(z)

The next step is to understand the asymptotics of A(z). Recall that

A(z) =E Lﬁfi Z))] . (9.15)

From the loop equation, we know that C(z) is entire, and the leading term
involves A(z)B(z). That is,
A(2z)B(z) = entire function + O(e). (9.16)

Using the Wiener-Hopf factorization of B(z), let us multiply (9.16) by
e~ "+(2) The entire function remains entire in a complex neighborhood of
[I,7]. Therefore, we can integrate over w_, and get

—hy (w) —h—(w)
0= 155 C(w)e dw 1 A(w)e dw +0(e)

2mi w—z 2 J, w—z

—h_(w)
= —A(z)e -G 4 1§£ de +O(e).
Wi

211 w—z

In the last equality, we took a residue at w = z, and replaced the integral
by an integral over w, .

The integrand has no singularities outside w., and thus is just the residue
at infinity. Using the fact that e ="~ = +O0/®) = 14.0(1/u), u — oo and
the fact that the expectation A(u) is balanced in u (hence it is 14+ O(1/u)),
we see that the residue at infinity is simply equal to 1. Therefore,

0=-A()e @ +14+0(), AR =h_(z)+0().

We emphasize that this equation stays valid for all functions W (z).



CHAPTER 9. LOOP EQUATIONS AND ASYMPTOTICS TO GAUSSIAN FREE FIELD146

9.3.6 Outlook of further steps

Let us rewrite the last equation explicitly, inserting W into the expectation,
and taking Eg to be the undeformed expectation over the GSE corner:

T (= — A) 1 (W) + 56 w)
Eo TR— =.§I§ dw + O(e).
2Ty e W) (2 — py) 21 Joo_ w=z
(9.17)
There are the following extra steps required to complete the proofs of the
main results:

e Continue the expansion (9.17) to higher orders of .

e Extract probabilistic information from the formula in the left-hand
side of (9.17).

e Carefully execute the analysis, including all the required estimates, to
get the asymptotic behavior of the Stieltjes transforms.

e From the Stieltjes transforms, extract the asymptotic behavior of the
height function.

We do not perform this analysis here, but direct the reader to [GH24]
for the full details, in a setting of lozenge tilings with g-Racah weights.

9.4 Problems

9.4.1 Brownian bridge

Derive the covariance structure of the Brownian bridge (9.9) from the series
representation (9.8).
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Dyson Brownian Motion

10.1 Motivations

10.1.1 Why introduce time?

Our previous lectures dealt with static matrix ensembles (e.g., GUE, GOE,
and so on). However, there are both physical and mathematical reasons to
study a dynamical model for random matrices. For instance:

1. In physics, one often interprets random matrices as Hamiltonians of
quantum systems. It is natural to let these Hamiltonians vary in time
and to describe how spectra evolve.

2. Such time-dependent models are vital for studying universality results
in random matrix theory. Rigorous proofs of local eigenvalue correla-
tions often involve coupling or evolving an ensemble toward (or away
from) a known reference ensemble.

3. Dynamical extensions yield intriguing connections to 2D statistical
mechanics, representation theory, and Markov chain interpretations
such as nonintersecting path ensembles.

10.1.2 Simple example: 1 x 1 case

When N =1, an N x N Hermitian matrix is just a single real entry. Thus
GUE/GOE/GSE distributions each reduce to a real Gaussian variable with
mean 0 and variance 1. If we allow t¢ime, the natural time evolution is
standard Brownian motion B(t) on R.

Recall that a standard one-dimensional Brownian motion B(t) is a con-
tinuous stochastic process with the following key properties:

147
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1. Continuity: t — B(t) is almost surely continuous.

2. Independent increments: For any 0 < s < t, the increment B(t) —
B(s) is independent of the past {B(u) : 0 < u < s}.

3. Gaussian increments: B(t) — B(s) is normally distributed with
mean 0 and variance t — s; that is,

B(t) — B(s) ~ N(0, t — s).
Thus, if the process starts at B(0) = a, then for any fixed ¢t > 0,
B(t) ~ Na, t).

Our goal is to generalize this to the case of matriz-valued Brownian
motion and, ultimately, to see how the eigenvalues of such a matrix evolve.

10.2 Matrix Brownian motion and its eigenvalues

10.2.1 Definition

Let X (t) be an N x N matrix whose entries are i.i.d. real/complex Brownian
motions (depending on 5 = 1,2). For instance:

e If 5 =1: X(t) has entries that are i.i.d. real Brownian motions.

e If 5 = 2: X(t) has entries that are i.i.d. complex Brownian motions
(independent real and imaginary parts).
Since X (t) may not be Hermitian, define
1

M(t) = %(X(t) +X1(1)).

Here XT(t) is the conjugate transpose. Then M(t) is an Hermitian matrix
(or real symmetric for g = 1).

Lemma 10.1. If M(0) = A is a fized deterministic matriz, then M(t) at
time t is distributed as

where Gg is a random Hermitian matriz from the Gaussian ensemble with
B=1or2.

Sketch of proof. Straightforward observation. O
For the one-dimensional case, notice that a + v/t Z, where Z ~ N(0, 1),

is a Gaussian random variable with mean a and variance ¢, and every such
Gaussian variable can be represented in this form.
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10.2.2 Eigenvalues as Markov process

We now focus on \;(t), the (ordered) eigenvalues of M(t). Denote

At) = (Ai(t) > > An(t)).

Theorem 10.2. Ast varies, the process A(t) is a continuous-time Markov
process in RN

Lemma 10.3. Let U € U(n) be an arbitrary fixed or random, and let V €
U(n) be Haar distributed and independent of U. Then the matrices U and
UV are independent and distributed as (U, V).

Proof. We have

P(U € A, UV € B) :/ / U)15(UV)dU dV
U(n)

= /U(n/ (U)dU dV

_ / LA(U) dU / 15(U) dV
U(n) U(n)
= P(U e A)-P(VeB).

Here we used the fact that for any fixed U, the distribution of VU is the same
as the distribution of V. This is because the Haar measure is invariant under
left multiplication by unitary matrices. Thus, we get independence. O

Sketch of proof of Theorem 10.2. Assume § = 2, the case § = 1 is similar.
We need to show that \(¢) depends on its past only through its instantaneous
value. Using the independent increment property of the Brownian motion
on matrices, consider times 0 < u < t. We have

M(t) = M(u) + (M(t) — M(u)),

Where the second term is independent of all information up to u. Since
M(u) diagonalizes to diag(A1(u), ..., An(u)) by some unitary U,:

M(u) = U, diag(A1(w), - .., An(u)) UJ.
Now take another independent Haar-distributed unitary matrix V' and write

VIM@)V = VI Uf diag(Mi(w), ..., An(w) UV + V(M) — M(u))V.
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Here, U,V is Haar distributed and independent of U, by Lemma 10.3.
Therefore, U,V carries no information from the times s < w. Thus, af-
ter conjugation by U, V', we have

U, M(#)UL = diag(M(u), ..., An(w)) + UV (VI(M(t)—~M(w)) V) VIU].

The left-hand side has eigenvalues A;(t), which are obtained from A;(u) by
adding a random term. This random term is a GUE matrix with variance
t — u (the matrix VT (M(t) — M(u))V which has the GUE distribution by
the unitary invariance of the GUE), conjugated by a matrix U,V which is
independent of the times s < w. This completes the proof. ]

10.3 Dyson Brownian Motion

We now describe the stochastic differential equation (SDE) for A(¢) explic-
itly, following the classical result due to Dyson [Dys62al. Let us first briefly
discuss what is an SDE.

10.3.1 Stochastic differential equations - an informal intro-
duction

In order to describe the eigenvalues of a time-dependent Hermitian matrix,
we rely on stochastic differential equations (SDEs). These are differential
equations where one or more of the terms involve random noise. For simplic-
ity, we start with the one-dimensional setup and later extend it to systems
of equations such as those arising in Dyson Brownian Motion.

In an ordinary differential equation (ODE), a function x(t) evolves ac-
cording to a deterministic rule of the form

dx(t)
dt

= b(a:(t)),

where b(-) is a deterministic function called the drift. If one imposes an
initial condition x(0) = =z, then classical theorems guarantee that, under
mild regularity assumptions, a unique solution exists for all ¢ > 0.

An SDE generalizes this setup by adding a stochastic (or noise) term to
the right-hand side. Concretely, suppose W (t) is a standard one-dimensional
Brownian motion. Then the simplest SDE has the form

da(t) = odW(t),



CHAPTER 10. DYSON BROWNIAN MOTION 151

where ¢ is a nonnegative constant. This equation may be formally inter-
preted as

dx(t) dW (t)
=0
dt dt -’
but it should be emphasized that dd—vtv does not exist in the usual sense of

classical calculus (Brownian motion is nowhere differentiable almost surely).
Instead, one interprets the equation via the Ité integral

o(t) = 2(0) + /0 o AW (s).

This integral is defined carefully through a limit of sums involving the in-
crements W (ty11) — W (ty), yielding an almost sure continuous stochastic
process t — x(t).

More generally, one allows both drift and diffusion terms:
dz(t) = b(z(t))dt + o(z(t)) dW(¢). (10.1)
Here,
e b(-) is the drift coefficient, capturing deterministic motion;

e o(-) is the diffusion coefficient, encoding how strongly the process is
randomized by Brownian motion.

Under suitable Lipschitz and growth conditions on b and o, one can show
existence and pathwise uniqueness of strong solutions to (10.1). Concretely,
this means there is almost surely a unique process x(t) satisfying (10.1) for
each realization of the Brownian motion W (t). One constructs such a so-
lution, for example, by an iterative limit of approximations. The simplest
discrete-time approximation, analogous to Euler’s method for ordinary dif-
ferential equations. Over a small time step At, one approximates

Tnt1 = Tn + b(zn) At + o(zn) (W(tn—H) - W(tn))

This scheme converges to the true solution pathwise under standard Lips-
chitz conditions on b and o.

A major utility of SDEs is in performing Ité calculus. Suppose xz(t) solves
the SDE (10.1) and let f: R — R be a sufficiently smooth function. One
might try to apply the usual chain rule to f(z(t)), but must account for the
extra "noise” term. The correct extension is the It6 formula:

2
Fla) = D an) dalt) + 5 9L (@(0)) (@W ()",
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where (dW (t))? is interpreted as dt in a formal sense. Substituting (10.1)
yields:

i (2®) = () L @) at + o w) 2 @) av ) + £ @) 2L 20 at
Ox Oz 2 Ox?

This identity is an indispensable tool for analyzing stochastic processes, both

in theoretical and applied contexts.

To handle matrix-valued processes, one must consider multi-dimensional
(or matrix-dimensional) analogs of (10.1). For instance, if X (¢) € R” is an
n-dimensional stochastic process, the SDE becomes

dX(t) = b(X(t))dt + o(X(t))dW(t),

where b(-): R” — R"™ and o(-): R" — R™*™. Here W(t) is an n-dimensional
Brownian motion, and the product o (X (¢)) dW (¢) is understood as a matrix-
vector multiplication in each small time increment. Existence, uniqueness,
and It6’s formula all generalize naturally under suitable regularity assump-
tions.

Summary Although SDEs can be introduced rigorously via measure-theoretic
tools, the above informal derivation and discussion provide a workable
framework for many typical computations. The key points are:

e Brownian motion’s roughness prevents classical differential calculus,
so new techniques (It6 integrals) are needed.

e The It6 formula extends the classical chain rule by adding a second-
order correction term.

e Existence and uniqueness theorems ensure that SDEs define well-posed
dynamical systems in a stochastic setting.

e Extending to matrix-valued (or multi-dimensional) settings is concep-
tually straightforward but requires careful linear algebraic bookkeep-
ing and additional regularity arguments.

Equipped with these ideas, we can rigorously address how the eigenvalues
of a random matrix evolve over continuous time, culminating in the Dyson
Brownian Motion description of Hermitian ensembles.
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10.3.2 Heuristic derivation of the SDE for the Dyson Brow-
nian Motion

Let M(t) be an n x n Hermitian matrix evolving as M(0) = A plus i.i.d.
Gaussian increments in time. Denote its ordered eigenvalues at time ¢ by

A > > Aalb).

We aim to find an SDE for \;(¢).
For a small increment At, we have

Mt + AL = M) + AM,

where the entries of AM are (approximately) independent N (0, At) random
variables (real or complex). Suppose we diagonalize M(t) = U diag(A1(t), ..., A\, () UT.

Sketch of the computation. Search for the i-th eigenvalue of the form
A= XN(T) + AN [expect AX = O(VAD)].

We want to solve

M(T) = M(T) + B (At) = Ax - % Bi1(At)
% Byi(At) o An(T) = Mi(T) 4 Bun(At) — AX

In this matrix only n — 1 diagonal elements — excluding the (i,4) entry —
are bounded away from zero; the remaining (i,%)-th off-diagonal element is
small. We have

det = ﬁ [)\m(T)—)\i(T)nLBmm(At)—A)\} - Z( I1 [Am(T)—AZ-(T)Jerm(At)—AA]> %Bfi(At) to
m=1 J#i Smj

Here, the first product (diagonal part) involves all n diagonal-like terms,
and the sum over j # i (n — 1 diagonal elements) accounts for corrections
from the off-diagonal blocks. Higher-order terms are o(At).

Divide by ] [Am(T) — Xi(T) + Bm(At) — A)] to obtain
3 Bji(A)
(1) = Ni(T) + Bj(At) — AN

o(At) = —AX + Bi(At) — > X
J#i
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Hence, to leading order in small At, we can ignore A\ in the denominator,
replace szi(At) by At as its expectation,! ignore the random correction (as
in It6 calculus), and obtain the desired SDE. We do not go into further
details here, but the details are abundant in the literature, including the
original work of Dyson [Dys62a]. O

Definition 10.4 (Dyson Brownian Motion). Fix § > 0 and initial data
(A1(0) > --- > A,(0)). The Dyson Brownian Motion is the unique strong
solution to the system of SDEs

s dt .

dri(t) = = —_— dW;(t =1,... 10.2
Z( ) ) Z )\Z(t) o )\](t) + Z( )7 ¢ ’ y 1, ( )
J#i

with the W;(¢) being independent real standard Brownian motions. For
B = 1,2,4, this coincides with the eigenvalue process of matrix Brownian

motion (GOE, GUE, GSE).

Remark 10.5. Equation (10.2) succinctly captures the key idea that the
eigenvalues repel each other. Note the singular drift term rl& which pushes

Ai away from collisions with A;. This repulsion is so strong (for all 8 > 0)
that eigenvalues will not cross (and thus remain ordered) with probability
one.

10.4 Mapping the GPE densities with the Dyson
Brownian Motion

If the Dyson Brownian motion starts from zero? A\;(0) = --- = An(0) = 0,
we expect that at time ¢, the density of eigenvalues is GSE,

x H])\Z —\° exp{—;tZ)\g}.
i<j i

This is evident for 8 = 1,2,4, when we have a matrix model, but not so
much for other . For other 3, we would like to

e Make sense of the SDE and its solutions. We skip this part in the
course.

IFor other 8, this will be SAt, due to the dimensionality of the Brownian motion on
the full rank matrix.

2And then the particles immediately repel each other and stay ordered for the whole
time.
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e Make a computation checking that the above density is preserved un-
der the SDE (10.2).

For example, in the N = 1 case, dA = dW (t) is a Markov process and
one wants to show that

p(t,A) = \/% eXp(—;i)

is preserved in the evolution. To verify this, one computes the generator of
the semigroup, which for Brownian motion is

102
2 ON2°
One then checks that

1 92

ap(t )‘) = 5 Wp(ta )‘)

This is a direct computation.
For larger N, one needs to write down the corresponding generator and
check that the same type of equation is satisfied. See Problem 10.7.3.

10.5 Determinantal structure for 5 = 2

To understand the determinantal structure of the Dyson Brownian Motion,
we first need the explicit transition probabilities:

Theorem 10.6 (5 = 2 Dyson Brownian Motion transition probabilities).
For B =2, let A\(t) = (M(t) > --- > An(t)) follow Dyson Brownian Motion
starting at A(0) =a = (a1 > --- > apn). Then for each fized time t > 0,

PO =x A0 =a) = M) [ E dufen (- 0D))"

a; — a; =1
1<i<j<nN v %I J
where x1 > -+ > IN.

The proof of this theorem is given in the next Chapter 11, based on the
Harish—Chandra-Itzykson—Zuber formula that we outline next.
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10.6 Harish-Chandra—Itzykson—Zuber (HCIZ) in-
tegral

In this section, we give a self-contained derivation of the Harish—Chandra—

Itzykson—Zuber (HCIZ) integral from first principles, in a form commonly

used in Random Matrix Theory and particularly in the derivation of Dyson

Brownian Motion transition densities.

10.6.1 Statement of the HCIZ formula

Let A and B be two N x N Hermitian matrices with (real) eigenvalues
SpeC(A):(alv"'vaN)7 SpeC(B):(blaabN)

We want to compute the integral
I(A,B) := / exp(Tr(AU BUY)) dU,
U(N)

where U(N) is the group of N x N unitary matrices equipped with its nor-
malized Haar measure dU. The Harish-Chandra-Itzykson—Zuber formula
states that

N—-1
Tr(AUBUT)dU — k!

up to conventions for the normalization of the Haar measure. Many refer-
ences fix the normalization constant as above.

det [e “ibi]ivjzl

[Ticicjen(a; —ai) TTi<icjan(bj — i)

)

10.6.2 Reduction to the diagonal case

The integrand exp(Tr(AU BUT)) depends on U only via conjugation. Ex-
ploiting the Haar measure’s bi-invariance:

1. Diagonalize A = V4 diag(ay,...,an) VAT.
2. Diagonalize B = Vg diag(by,...,bn) Vg.
3. Notice
TH(AUBUY) = Tr(diag(a) (ViUvg) diag(b) (ViU VA)) .
Setting W = le U Vg preserves the Haar measure. Thus

/ eTr(AUBUT) dU — / ¢ Tr(diag(a) W diag(b) wt) dW.
U(N) U(N)
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Therefore, we may assume A = diag(a) and B = diag(b). In that case,

N
Tr(AUBUY) = > a;b; |Uy/.
i,j=1
Hence
N
Te(AU BUY)) dU :/ S0 U 12) dU. (10.3
/qu)eXp( r )) U(N)exp<g::1a i J|> 1o

10.6.3 Symmetry

Let f(A, B) denote the right-hand side of (10.3). We have established that
f(A, B) must be:

1. Symmetric in the eigenvalues {aj,...,an} of A
2. Symmetric in the eigenvalues {b1,...,by} of B
3. Analytic in all variables when the eigenvalues are distinct

When some eigenvalues coincide, the function must behave appropri-
ately. Specifically:

Lemma 10.7. If a; = a; for some i # j, then f(A, B) must be invariant
under permuting the corresponding b; and b;.

Proof. When eigenvalues coincide, the corresponding eigenvectors can be
chosen arbitrarily within the degenerate subspace. This means that when
a; = a;, we can apply a unitary transformation that effectively swaps the
roles of b; and b; without changing the integral. O

Remark on rigor. To make these symmetry arguments fully rigorous,
one notes that f(A, B) can be extended to an analytic function of the eigen-
values (even when they are treated as complex variables close to the real
axis). Moreover, if some a; = a;, the existence of a unitary acting within
the degenerate subspace justifies the required symmetry in (b;, b;). One also
checks that f(A, B) remains finite in the limit (a; —a;) — 0 or (bj —b;) — 0,
enforcing vanishing at a rate that compensates for the factor in the denom-
inator.
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This constraint, combined with analyticity, forces f(A, B) to vanish as
(aj—a;) = 0or (bj—b;) — 0 at arate that exactly cancels the denominator’s
singularity. The form of the answer must therefore be:

9(A, B)

A B) = ’
s [<icjen(a; = ai) Tlicicjen(b; = bi)

where g(A, B) is analytic and antisymmetric in the {a;} and in the {b;}
variables.

10.6.4 Conclusion of the argument

By the fundamental theorem of antisymmetric polynomials, g(A, B) must be
expressible as a product of the Vandermonde determinants and a symmetric
function. Moreover, by examining the behavior under the scaling A — tA
and B — B/t, one shows that the only function with the correct analytic
properties and scaling behavior is
9(A, B) = Cy - detle“]Y,_,,
where Cy is a constant depending only on N. One can alternatively pin
this down by checking that f(A, B) satisfies a certain heat equation in A
(or B), and thus matches the known solution det[e*%/] up to a constant.
Therefore, we have established that
b 1N
det[e 7]y
H1§i<j§N(aj — a;) H1§i<j§N(bj —bi)’

/ eTr(AUBUT)dU — By
U(N)

where @y = Cjy is a normalization constant independent of the eigenvalues.
Through a separate calculation (see Problem 10.7.4), often involving either a
small-time heat-kernel expansion or a rank-one reduction, one can determine
that

N-1
oy =[] *" (10.4)
k=1

10.7 Problems

10.7.1 Collisions

Show that two independent standard 1D Brownian motions, started at a; #
az, almost surely intersect.
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10.7.2 Estimate on the modulus of continuity

Let B(t) be a standard 1D Brownian motion with B(0) = 0, defined as a
process with independent increments and B(t) — B(s) ~ N (0,t—s), without
any continuity assumptions.
Show that
E|B(t) - B(s)]* < [t —s|

implies that that one can take an almost surely continuous modification of
the function ¢t — B(t).
10.7.3 Generator for Dyson Brownian Motion

Consider the Dyson Brownian Motion(Definition 10.4) for general 8 > 0.
The invariant measure for this process when started from zero is expected
to be the distribution with density proportional to:

N
s A1y AN) X H X — AjlP exp {—; ZA?} .
i<j i=1
Prove that this density is invariant under the Dyson SDE (10.2) by showing
Lpg =0,
where L is the infinitesimal generator of the process. Specifically, compute:
2

1Y el 9 1
[”’:2;3@"_2223& <)\i—>\jp>’

=1 j#i

and verify that it indeed annihilates pg.

10.7.4 Constant in the HCIZ formula
Show that in the Harish—Chandra—Itzykson—Zuber formula, the constant

® is given by
N-1
oy =[] *
k=1

by directly evaluating the left-hand side for the special case

A = diag(z,0,...,0), B = diag(y,0,...,0).



CHAPTER 10. DYSON BROWNIAN MOTION 160

In this rank-one case, note that
T(AUBUY) = ay|Un|™

You can then reduce the integral to one over the distribution of the first
column of U, which is a vector uniformly distributed on the complex unit
sphere CVV (under the normalized Haar measure). Use the known Jacobian
for this parametrization to perform the integral and match it with the right-
hand side evaluated at (ai,b1) = (z,y) and (ag = --- = ay = by = -+ =
by =0).



Chapter 11

Asymptotics of Dyson
Brownian Motion with an
outlier

11.1 Recap

11.1.1 Dyson Brownian Motion (DBM)

We introduced a time-dependent model of random matrices by letting an
N x N Hermitian matrix M (t) evolve in time so that each off-diagonal entry
follows independent Brownian increments (real or complex depending on the
symmetry class). Setting

1
M) = —(X@#)+ XT(1),
(t) \/5( (t) (1)
where X (¢) is an N x N matrix of i.i.d. Brownian motions, produces a
self-adjoint matrix with a stochastically evolving spectrum. This model is
full-rank matrix Brownian motion, and works well for § = 1,2,4. For other

B, we need an SDE to describe the evolution of the eigenvalues (particles).

11.1.2 Eigenvalue SDE

Denote by Ai(t) > --- > An(t) the ordered eigenvalues of M(¢). Dyson
showed that these eigenvalues form a continuous-time Markov process sat-
isfying the SDE

_B aé | -

161
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where 8 > 0 and W;(t) are independent standard real Brownian motions.
For classical random matrix ensembles (8 = 1,2, 4), this SDE describes how
the eigenvalues evolve under real symmetric (GOE), Hermitian (GUE), or
quaternionic (GSE) Brownian motion — in the last Chapter 10 we discussed
the cases § = 1,2 in detail. A key feature is the repulsion term ﬁ, which

prevents collisions (and ensures the ordering remains intact).

11.1.3 Preservation of GGE density

A fundamental result is that starting from all eigenvalues at 0, the distribu-
tion of A(t) at time ¢ has the joint density proportional to

H |>\7, - )\j‘ﬁ exp{—z% Z)\?}7
1<j i

matching the Gaussian [f-Ensemble (GSE) law. Hence DBM provides a
dynamical realization of GGE. Invariance can be checked by verifying that
this density is annihilated by the generator of the SDE.

11.1.4 Harish—Chandra—Itzykson—Zuber (HCIZ) integral

The HCIZ integral is a key tool for computing matrix integrals involving
traces. For two Hermitian matrices A and B with eigenvalues (aq,...,an)
and (by,...,by), it states (in one common normalization):
b1V
det[e®® ],
H1§i<j§N(aj — a;) H1§i<j§N(bj —bi)

N-1
/ exp(Tr(AUBUY))dU = [] *!
U(N) k=1

This formula is instrumental in deriving transition densities for 5 = 2 Dyson
Brownian Motion.

11.2 Optional: proof of HCIZ integral via repre-
sentation theory

In this section, we outline a standard argument (adapted from the theory of
symmetric functions and representation theory of the unitary group) that
leads to a proof of the Harish—Chandra—Itzykson—Zuber formula. It is often
referred to as the “orbital integral” or “character expansion” approach.

Step 1. Setting up the integral and Schur expansions. Let A
and B be two N x N diagonalizable matrices, with eigenvalues a,...,ay
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and Ap,..., Ay respectively. Denote by D, = diag(ai,...,ay) and Dy =
diag(A1,...,An). We want to evaluate the integral

I :/ exp(Tr(D, U D\ U")) dU
U(N)

over the Haar measure on U(N).
Since Tr(B) = p1(B) in the language of power sums (where p; (21, x2,...) =
x1 +x2+...), we have

exp(Tr(B)) = exp(pl(B)).

One can use a known expansion [Mac95]

1 (B) _ anif!?) _ Z% E: dim(y1) s,(B),
wi|pl=m

where the sum is over all partitions p of size m, and s,(-) is the Schur
polynomial (or Schur function) indexed by p. The coefficient dim(u) is the
dimension of the corresponding representation of Sy,.

We set B = D,U D, U and write

o
1
I :/ exp(Tr(Da U Dy U ) dU :/ — dim(p) s, (D, U D\ UT) dU.
oo™ ) o 2 M:%Em . )

One can exchange the integral and the sum (the series converges absolutely
for all matrix arguments), giving

_ - dim () s T
I=>% > /U(N) (DU D\UT dU. (11.1)

m)!

m=0 p:|u=m

Step 2. Orthogonality of characters and the Unitary group. The
Schur functions s,(-) can be seen as irreducible characters of the unitary
group U(N) (up to a normalization factor) when restricted to N-tuples of
eigenvalues.'

's, for £(u) < N can be viewed as the character of the corresponding polynomial
representation of GL(N, C), then restricted to U(N). If £(u) > N, the function s, vanishes
on U(N). Thus, we need to impose the condition |a;| = |A;| = 1 (so that Da, Dx € U(N))
to ensure immediate applicability of representation theory of U(N), then extend to general
{a;} and {\;} by analytic continuation.
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Proposition 11.1 (Functional equation for characters of compact groups).
Let G be a compact group with normalized Haar measure dh, and let x be
an irreducible character of a finite-dimensional representation of G. Then
for any elements g1, g2 € G, the following relation holds:

/GX<91h92h1)dh = W, (11.2)

where dim'V' = x(e) is the dimension of the representation space.
Remark 11.2. A similar relation holds for characters of finite groups.

By Proposition 11.1, the integral over U(N) in (11.1) can be evaluated

as
1

Dimn () su(a) su(N),

/ﬁ s, (Do UD\UT)dU =
U(N)

where Dimpy (p) is the dimension of the corresponding irreducible represen-
tation of U(N). Substituting back into (11.1) yields

I SR RN (L AP}

m! Dim
m=0 ju:|p|=m, {(0)<N ~r)

where £(;) < N is needed for s,(-) not to vanish on U(N).

Step 3. Hook-length formulas and the final determinant. Next, one
applies the hook-length formula and the hook-content formula to dimensions:

N + (O
Dimy (1) = Hmﬁ’;( - :LF(D() ))7

!
HDeu h(D) ’

dim p =

We have N
o7 (i N =)l
H(N +c(0)) = HW7
Oep =1
so identifying m; = p; + N — i gives
I=ot---(N-1! Y M,

my!---mpy!
m1>...>mpy>0 1 N

which yields the HCIZ formula by the Cauchy-Binet summation.
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11.3 Determinantal structure for g = 2

11.3.1 Transition density

Theorem 11.3 (S = 2 Dyson Brownian Motion Transition Probabilities).
For B =2, let A\(t) = (M(t) > --- > An(t)) follow Dyson Brownian Motion
starting at A(0) =a = (a1 > --- > ayn). Then for each fized time t > 0,

_ _a) - L\~ Ti — @] (@i = a;)*\1V
P()\(t) - ‘ MO = a) =N (\/ﬁ) 1<i1<_][<N a; — aj det [exp<_ 2t >]i,j=17

where 1 > -+ > xN.

Proof. Consider an N x N Hermitian matrix process X (¢) whose entries per-
form independent complex Brownian motions (so that X (¢) is distributed as
A+ +/t GUE at each fixed time, with A = diag(a,...,ayn)). Its eigenvalues
A1(t) > -+ > An(t) evolve exactly according to the S = 2 Dyson Brownian
Motion.

The density of X at time ¢, viewed as a random matrix, is proportional
to

exp(—% Tr(X — A)2>.

If we replace A by U AU for any fixed unitary U, the law of X remains
the same (this follows from the unitary invariance of the GUE). Thus the
distribution of the eigenvalues of X is unchanged by such conjugation.

One writes

/U(N) exp(—%t Tr(X-UA UT)2) dU = (const.)x[HCIZ integral in the variables (X, A)],

which by the Harish—-Chandra—Itzykson—Zuber formula leads to a product
of determinants and a factor that is precisely

ol N det [exp(xitaj )}
exp(~3 > af = &> af) |
i=1 i—1 Hi<j(5ﬂz' —xj) (a; — ay)

where 1, ..., x5 are the eigenvalues of X.

To convert this matrix distribution into a distribution on eigenvalues
alone, we multiply by the usual Vandermonde Jacobian [, ;(zi — z;)?
(which comes from integrating out the unitary degrees of freedom). This

produces exactly

NA)Y T 22 des [exp(_L;gﬂQ)]

G — as
i<j
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Hence we obtain the stated transition probability for the Dyson Brownian
Motion at 5 = 2. O

Remark 11.4. The factor N! (ﬁ)N arises naturally from normalizing
the Gaussian increments and accounts for the ordering A\ > --- > Ay. The
determinant and product factors encode the eigenvalue “repulsion” charac-
teristic of 8 = 2 random matrices.

11.3.2 Determinantal correlations

Theorem 11.5 (Determinantal structure for 5 = 2 DBM). Let {z1(t),...,z,(t)}
be the eigenvalues at timet > 0 of the § = 2 Dyson Brownian Motion started

at initial locations (aq,...,a,) at time 0. Equivalently, these x;(t) are the
eigenvalues of

A+VEG,

where A = diag(ay,...,a,) and G is a random Hermitian matriz from the
GUE. Then the (random) point configuration {z;(t)} forms a determinantal
point process with correlation kernel

w —2yw 22222\ Ty w—a; dwdz
K, ) o) -
(z,y) = 271'2t// /exp 2t gz—aiw—z

Here z goes around all the points aq, ..., a, in the positive direction, and the
w contour passes from —ioco to ico, to the right of the z contour.

e Ifa; = - =a, = 0 and ¢t = 1, this kernel reduces to the familiar
correlation kernel of the GUE (see Chapter 6).

e One can use this formula to study the Baik-Ben Arous-Péché (BBP)
[BBPO05] phase transition for § = 2, which deals with finite rank per-
turbations of the GUE random matrix ensemble. Indeed, rank r per-
turbation corresponds to taking a1,...,a, # 0, and a,41 = --- = a, =
0.

11.3.3 On the proof of determinantal structure

The idea of the proof of Theorem 11.5 is to represent the measure (the tran-
sition density) as a product of determinants. In general, if a measure is given
as a product of determinants, there is a well-studied method (biorthogonal
ensembles and, more generally, the Eynard—Mehta theorem) to compute the
determinantal correlation kernel. We refer to [BRO5], [Borl1] for a detailed
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exposition in the discrete case (which is arguably more transparent). The
first step for the Dyson Brownian Motion is as follows.

Lemma 11.6 (Density representation). Let Py(x — y) be the transition
probability kernel of standard Brownian motion,

! exp (— (z—y)* ) :
Vart 2t
Then the density of the eigenvalues (1, . ..,xN) of DBM started at (a1, ...,aN)
at time 0 admits the representation

P(r —y) =

. 1 N N
8151010<Z> det [Py (a; — xj)]i’jzl det [ Py (w; =k — 1)ka:1. (11.3)
Remark 11.7. This representation (11.3) is related to an alternative de-
scription of the f = 2 Dyson Brownian Motion as an ensemble of noncollid-
ing Brownian motions (that is, independent Brownian motions, conditioned
to never collide).

Proof of Lemma 11.6. The first determinant (as s — 0o) matches the de-
terminant we have in Theorem 11.3. It remains to analyze the second de-
terminant

det[Pafey k-1 = e[t (- (nly Y

. 1 . . .
We may ignore the factor Jas n each entry since it does not depend on

x;. Inside the exponential,

I V) M 1 G VI GV
2s - 2s s 2s
Thus, up to the factor exp(— (k;iP) (which depends only on k and hence

2
is independent of each x;), we can factor out exp(— %) from row j. Con-
sequently, the nontrivial part of the determinant becomes

T; (k—1)7 N
det [e E ] .
k=1

Recognize this as a Vandermonde-type determinant in the variables e/,
Indeed,

z; (kfl):|N T

det[e E = (e%—e%).

1<i<j<N
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zi . . @ %
As s — oo, we expand e 5 = 1+%+O(5%), so each difference (e s —es ) ~

T
———1. Hence,

H (e%—e%)fv% H (x; — xj).

1<i<j<N s 2 1<i<j<N

Combining all these factors and matching with the first determinant (as
s — o0) verifies the claimed product form, up to overall constants that do
not depend on the variables x;. This completes the proof. O

Then, the product of determinants idea (biorthogonal ensembles) applies
to the density (11.3) before the limit s — oo, and simplifies after taking the
limit. We omit the details here, see Problem 11.5.1.

11.4 Asymptotic analysis: signal plus noise

11.4.1 Setup

In this section, we provide a detailed derivation of how the rank-1 spike
A+ VG, A = diag(a,0,...,0) with a € R,

affects the large-n and large-time behavior of the Dyson Brownian Mo-
tion at 8 = 2. See the simulation at https://lpetrov.cc/simulations/
2025-01-28-bbp-transition/.?

We set a; = ay/n and ay = a3 = -+ = a, = 0, which simplifies the
product:

n n
H w—a;) = (w—ayvn)w™ 1, H z—a;) = (z—ayn)z"!

=1 i=1

Let us also take t = 1 for simplicity, so that the limit shape (at least in the
case a = 0, but also in general) is supported by [—2y/n,2y/n]. Let us also
make the change of the integration variables w — wy/n, z = z/n.

Hence, the correlation kernel becomes

o) = i | (22T (=2 ey e

(11.4)

Here:

2Note that the simulation has 8 = 1 (real matrices), so the edge is at V2, and the
critical value of the spike is at 1/+/2.


https://lpetrov.cc/simulations/2025-01-28-bbp-transition/
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e The z-contour is a small positively oriented loop around z = a, and
also around z = 0, so that it encircles these two singularities but
excludes w.

e The w-contour is a vertical line (or an equivalent contour from —ioco
to i00) passing to the right of all singularities (i.e. to the right of z).

Note that to capture the edge behavior, we need to set x = y = 2 plus lower
order terms. Let us make this substitution x = 2\/n + 2/, y = 2y/n + ¢/,
and the scale of 2,3 will be determined later (but for now we assume that

they are o(y/n)).

11.4.2 Outline of the steepest descent approach

We aim to understand the behavior of (11.4) in the regime n — oo, especially
near the largest eigenvalue A;(t). Recall from standard GUE (i.e. a = 0)
that the top of the spectrum is about 24/n. The presence of the rank-1 spike
a can drastically modify the top eigenvalue if a is large enough to produce
an “outlier.” Our goal is to detect precisely how this occurs by analyzing
the double contour integral via steepest descent.

For large n, the integral localizes around these double critical point.
Any crossing from z- to w-contour may pick up residues, which account
for separate contributions (leading, for instance, to the Airy kernel in the
unperturbed GUE). We track how the spike a changes these deformations.

11.4.3 Asymptotics

Set
n—1

S(w;y') = % —2w—yw/v/n +

Then the integrand in (11.4) is

In(w).

exp {n[S(w;y') — S(z;2")] } w—a

w—z z—a

To capture the Airy behavior, we can ignore 3, and find the double critical
point of S(w;0). It is equal to w. = 1, and we would like to bring the z
and w contours to intersect at w. = 1. Note however that the old z contour
must encircle z = a and z = 0, and z = a is a pole of the integrand. The w
contour must always be to the right of the z contour.

We see that there are three regimes, which we consider in the next three
subsections.
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Figure 11.1: The plot of the region Re S(z) —Re S(1) > 0 at the edge, in the
neighborhood of the double critical point w,. = 1. The new w contour should
pass through the shaded region, and the new z must stay in the non-shaded
region.

11.4.4 Airy kernel

If a < 1, we can deform the z contour to encircle z = 0 and z = a, and the
w contour to pass through w = 1. This will lead to the Airy kernel, and the
derivation is the same as in Chapter 7. We obtain?

w 1
w:1+ gj/— 5 y,:L _

A
z=1+ /3’ ~ /6’ nl/6 /6

n1/3’ Kn — KAiry(gvn)'

Here

1 exp{WT3—£W—%3+77Z}
Kairy(§:m) = i) // W7 dW dz.

Indeed, the only one new thing that happens here is that a < 1, and so

w—a 1—a+W/nl/3

z—a l—atZ/nB 1+0(n™'?), (11.5)

so this term does not contribute to the asymptotics of the kernel.

11.4.5 BBP transition and the deformed Airy kernel

If a = 1, the behavior is going to be critical — we still will be able to get the
same scaling, but the limiting kernel will be different. Moreover, looking at

3Here and below, we understand the convergence of the kernels is up to a gauge trans-

formation of the form K(z,y) — ;EZ; K(z,y).
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(11.5), we see that we need to critically rescale a, so

_ 71/3 w*a_W*A 74/3 1 g )
a= 1+ATL ) ¥ —a - 7 _ A +O(n )7 n1/6 Kn — KAlry(§7n)7
where
w3 Z3
_ expy 5 —EW — - 4+ nZ _
Kany(&m) = 1. // { k ’ }W A aw az.
(271'@)2 W -7 Z— A

This kernel is the BBP transition kernel, first obtained in the seminal paper
by Baik—Ben Arous—Péché [BBP05]. The spiked top eigenvalue distribution
(and the Tracy—Widom distribution) are widely used in statistics of high-
dimensional, highly correlated data.

11.4.6 Gaussian regime

Finally, for @ > 1, we cannot deform the integration contours so that they
pass through the double critical point w. = 1. Instead, we can make the
contours pass through the point a itself, and scale the integration variables
w, z around a on the scale n=Y/2 and not n~1/3.

Moreover, we need to make x,y to scale around a different location
instead of 2y/n. We can find this location by first considering = = c\/n
and expanding as n — oo:

n <w2 —yw/\/ﬁﬂogw) ’

2 w=a+W/\/n, y=cy/n+n
2 w W2 W2
=n <a —ac+ log(a)> +v/n (—an +aW 4+ — — CW> 55t —nW.
2 a 2a 2

The term by n is the same in S(w) and S(z) and thus cancels out. The term
by v/n depends on W and cannot be simply removed by a gauge transfor-
mation, so we need to match c. We have

1
c=a-+ —.
a

Remark 11.8. Youcan gotohttps://lpetrov.cc/simulations/2025-01-28-bbp-transition/
and set the parameter 6 (which is the same as a) to an integer, make N large,

and check that the location of the top or bottom eigenvalue becomes exactly

a+ 1/a. (Despite the fact that the simulation at the link is for § = 1.)


https://lpetrov.cc/simulations/2025-01-28-bbp-transition/
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Setting ¢ = a + 1/a, we have

w? w2
22 T2
and thus the distribution of the top eigenvalue is given by a Fredholm de-
terminant with the kernel

-2

Ka6n) = o [ [ 5@ - wh —aw ez} Y
Note that the factor y/n in front of K; is precisely removed by the scaling of
w, z, and there is no additional scaling coming from the map (z,y) — (£, 7).
The contribution from (w — a)/(z — a) becomes W/Z.

The integration contours in K¢ are such that Re(W?2) > 0 and Re(Z?) <
0 on them, and this can be achieved by the contour deformation. Indeed, in
the new variables, the behavior at W = Z = 0 is quadratic, so the Z contour
must pass on the left, and the W contour must be on the right. One can
check that this contour deformation is possible.

nS ~ —nW,

Figure 11.2: The contour plot of R(Z?) around zero. Blue shades correspond
to negative values, and yellow to positive. The Z contour must pass through
the blue region and becomes vertical, and the W contour must stay in the
yellow region, and becomes a union of two half-lines, which are at the angle
< 7§ from the real line.

11.4.7 Matching Fredholm determinant to the Gaussian dis-
tribution

Let us renormalize the integration variables to remove the factor a2 — 1 in
front of the squares, and match det (1 — K¢)>,, to the Gaussian distribution
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(see also Problem 11.5.5 for another way to match). We will work with

1 1 W dW dZ
KG(faW):W//exp{2(ZQ—W2)—nW+§Z}.Z.W_Z

The discussion below is informal, but can be easily made rigorous.

Step 1. Partial fractions and decomposition. Observe that

W 1 1
ZW-2)  Z wW-2Zz°

Thus we can write

Ka(&m) = KW(En) + K3 (€ n),

where

KEMV(g,n) = (2;)2 //exp(;(ﬁ ~ W3 +£Z - nw) %dW dz,

K®(&,n) = (2;)2 //exp(5(22 —W?) +£7 - nw) 7 i — AW dZ.

The term K1) has a factor % independent of W — Z, while K® contains
the remaining part

1
w-Zz-

Step 2. Analysis of K(!), Focus on

(2;)2 (/ es?es d7Z) </ ema W dW)'

The operator K1) is a rank-1 operator in the variables &, n:

KW (&,n) = u(€) v(n)

for some functions u(-) and v(-) of one variable each. Hence K() has at
most one nonzero eigenvalue (its trace).

KW (g, n) =

Step 3. Representation of K(?) and the key identity. For K, we

use . ~
W -2 /0 c

(again justified by the choice of integration contours). Then

K(2)(f,77) :/ [21./6522+(£+t)z dZ} [11/6—§WL(77+t)W A
0 i 2
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Denote
A(g,t) = 1./eéz2+<f+t> dZ, B(t,n) =
27

Hence K (2) &,m) fo &,t) B(t,n) dt. In operator form on suitable spaces,
this reads K = A B, and one checks B A = I (identity on the t-variable
space), so A B and B A share the same nonzero spectrum. Indeed,

/df/deZe—W2+5226—(s+5)w+(5+t)z_

/ ¢ WI-HOW gy
27i

BA(s,t) = (27”

Integrating over £ in the Fourier sense yields the delta:
/ deef W) = ox6(Z — W).
R

Integrating in W is again an integral of e(""W and thus, the second 27
disappears, and we arrive at BA(s,t) = §(s — t), which is the kernel of the
identity operator.

We conclude that AB is a projection, since (AB)? = ABAB = AB.

For the rest of the analysis, continue to Problem 11.5.4.

11.5 Problems

11.5.1 Biorthogonal ensembles

Derive Theorem 11.5 from Lemma 11.6 using the orthogonalization process
similar to Chapter 5, and then taking the limit as s — oo.

11.5.2 Scaling of the kernel

Let a; = 0 in Theorem 11.5. Find « such that t* K, (x/v/t,y/v/t) is indepen-
dent of ¢. Can you explain this value of a?

11.5.3 Gaussian regime and integration contours

Check that the contour deformation from (z,w) to (Z, W) passing through
a described in Section 11.4.6 is valid.

11.5.4 Gaussian kernel

Finish the proof of the Fredholm determinant representation of the Gaussian
cumulative distribution function by manipulation with Fredholm determi-
nants, which was started in Section 11.4.7.
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11.5.5 GUE kernel

Consider the following generalization of the kernel K¢ from Section 11.4.6:

Kg(&n) = @//exp{;(z2_w2)_nw+gz} . (g)m%’

where m > 1 is an integer and the contours are as in Figure 11.2. Show that
the Fredholm determinant det (1 — K7);» (21+00) is the cumulative distribu-
tion function of the largest eigenvalue of the m x m GUE matrix, that is,

POAI™ < ).



Chapter 12

Random Growth Models

12.1 Recap

In our last lecture, we explored the asymptotics of Dyson Brownian Motion
with an outlier. We specifically focused on the phase transition that occurs
when a rank-1 perturbation is applied to a random matrix ensemble.

12.1.1 Dyson Brownian Motion with Determinantal Struc-
ture

We established that for 8 = 2, the eigenvalues of the time-evolved process
form a determinantal point process. The transition probability from an
initial configuration a = (a3 > --- > ay) to a configuration x = (x1 > --- >
xN) at time t is given by:

P\(t)=x| X0)=a) = N!(\/%)ngiggv z: : Z det [exp (—Wﬂj\;l

This determinantal structure enabled us to derive the correlation kernel:

1 w? — 2yw 22— 22\ v w — a; dwdz
Klw) = oy | [ oo () oo ()
(@,y) (2m)2t //exp 2t /exp 2t 11_11 Z—a; w—2z

(12.1)
where the contours of integration are specified to maintain analytical prop-
erties.

176
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12.1.2 The BBP Phase Transition

The central focus was the Baik-Ben Arous-Péché (BBP) phase transition
that occurs with finite-rank perturbations of GUE matrices. For the rank-1
case, we analyzed:

A+VtG, where A = diag(ay/n,0,...,0)

Through asymptotic analysis using steepest descent methods, we identi-
fied three distinct regimes:

1. Airy regime (a < 1): The largest eigenvalue follows the Tracy-
Widom GUE distribution, just as in the unperturbed case. The spike
is too weak to escape the bulk.

2. Critical regime (a = 1): A transitional behavior occurs when a =
1+ An~1/3 leading to a deformed Airy kernel:

X we_ -z
KAiry(fv”) = (2;-)2//6 p{ - Vf/VIZZ : —H]Z} Z__

3. Gaussian regime (a > 1): The largest eigenvalue separates from the
bulk, becoming an ”outlier” centered at a+1/a. Its fluctuations follow
a Gaussian distribution rather than the Tracy-Widom law.

12.1.3 Remark: Corners process with outliers

One can also perturb the corners process structure, and get correlation ker-
nels similar to (12.1) which we had for the Dyson Brownian Motion. The
perturbed corners process is considered in [FF14], see also the earlier work
[Met13] for the corners process of UDUT, where D is arbitrary and U is
Haar-distributed. Both the kernels for the Dyson Brownian Motion and the
corners process with outliers can be obtained from the formula of [Met13].
See Figure 12.1 for an illustration of the corners process with an outlier in
two cases, when the basis for the outlier is rotated or not (the rotation does
not affect the top level eigenvalue distribution, but has a significant effect
on the whole corners process).

12.1.4 Goal today

Today, the goal is to survey various objects which arise in the KPZ univer-
sality class:
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7

Figure 12.1: Two versions of the corners process with an outlier. Left:
Corners process of G + D, where D is a rank-1 critical perturbation with
eigenvalue 1. Right: Corners process of G + UDUT, where U € U(n) is a
Haar-distributed unitary matrix and D is a rank-1 supercritical perturba-
tion with eigenvalue 2 (the eigenvalue 1 is not visible in the rotated sys-
tem). In both pictures, n ~ 200. See https://lpetrov.cc/simulations/
2025-03-27-orthogonal-corners-outliers/ for an interactive simula-
tion.

e The Airy line ensemble, which is the universal edge scaling limit of
Dyson Brownian Motion, the corners process, and numerous statistical
physics models.

e Moreover, the Airy line ensemble arises and is fundamental for a class
of random growth models in one space and one time dimensions, which
is known as the KPZ universality class.

e We will briefly mention how the Gaussian Free Field (GFF) arises in
the KPZ class models in two space dimensions.

e We continue to discuss one particular model in the KPZ universality
class — the Polynuclear Growth (PNG) and the related Last Passage
Percolation (LPP) models.

12.2 A window into universality: Airy line ensem-
ble

The edge scaling limit of Dyson Brownian Motion and the corners process’

is a universal object for § = 2 models and determinantal structures (and
far beyond). GUE formulas provide us with a powerful lens through which
to examine these universality phenomena. In this section, we discuss the

!Both without outliers — the presence of critical outliers may add a few extra lines
(wanderers) to the Airy line ensemble, and we will not consider this complication here.


https://lpetrov.cc/simulations/2025-03-27-orthogonal-corners-outliers/
https://lpetrov.cc/simulations/2025-03-27-orthogonal-corners-outliers/
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limiting behavior of Dyson Brownian Motion near the spectral edge, high-
lighting two of its fundamental properties: Brownian Gibbs property and
characterization.

Theorem 12.1 (Edge scaling limit to Airy line ensemble). Consider an
N x N GUE (Gaussian Unitary Ensemble) Dyson Brownian motion, i.e.,
the stochastic process of eigenvalues (A1 (t) > -+ > An(t))ier evolving under
Dyson’s eigenvalue dynamics. After centering at the spectral edge parallel
to the vector v, and applying the Airy scaling (tangent axis scaled by N3
and fluctuations scaled by N_l/G), the top k eigenvalue trajectories converge
as N — oo to the Airy line ensemble. In particular, for each fixed k > 1
the rescaled process

(NVED (N3 N0 vy — CNt))1<i<k

converges in distribution (uniformly on compact t-intervals) to (P;(t))1<i<k,
where {P;(t) }i>1 is the parabolic Airy line ensemble.

Remark 12.2. The random variable P;(0) has the GUE Tracy-Widom
distribution.

Theorem 12.3 (Airy line ensemble is Brownian Gibbsian [CH16]). The
parabolic Airy line ensemble {P;(t) }i>1 satisfies the Brownian Gibbs prop-
erty. Namely, for any fixed index k > 1 and any finite time interval |a,b],
conditioning on the outside portions of the ensemble (i.e., {P;(t) : t ¢ [a,b]}
for all j, and {P;(t) : j # k} fort € [a,b]), the conditional law of the kth
curve on la,b] is that of a Brownian bridge from (a,Py(a)) to (b, Pr(b))
conditioned to stay above the (k+ 1)th curve and below the (k—1)th curve
on [a,b]. In particular, the Airy line ensemble is invariant under this re-
sampling of a single curve by a conditioned Brownian bridge.

Theorem 12.4 (Characterization of ALE [AH23]). The parabolic Airy line
ensemble is the unique Brownian Gibbs line ensemble satisfying a natu-
ral parabolic curvature condition on the top curve. More precisely, let P =
(P1,Pa,...) be any line ensemble that satisfies the Brownian Gibbs property.
Suppose in addition that the top line P1(t) approaches a parabola of cur-
vature 1/v/2 at infinity. Then £ must coincide (in law) with the parabolic
Airy line ensemble, up to an overall affine shift of the entire ensemble.

Let us define £;(t) = P;(t) + t2, and call £ the Airy Line Ensemble
(without the word “parabolic”). One can think that the parabola comes
from the scaling window, which is of different proportions in the horizontal
and vertical directions. The non-parabolic Airy line ensemble £ is time-
stationary, that is, its distribution is invariant under time shifts ¢t — ¢ + c.
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12.3 KPZ universality class: Scaling and fluctua-
tions

12.3.1 Universality of random growth

In the (1 + 1)-dimensional KPZ universality class, random growth mod-
els exhibit a distinctive scale of fluctuations fundamentally different from
classical Gaussian behavior. Kardar, Parisi, and Zhang [KPZ86] predicted
that such interfaces have roughness exponent 1/2 and growth exponent 1/3,
meaning that if time is scaled by a factor T, then horizontal distances scale
by T%/% and vertical height fluctuations scale by T3 [Rem22], as T — occ.
Equivalently, the interface height h(t,x) (after subtracting its deterministic
mean growth) satisfies the 1: 2 : 3 scaling:

+—1/3 <h(t, Xt2/3) — Elh(t, Xt2/3)]> converges in law as ¢ — oo.

These exponents 2/3 and 1/3 are universal in one-dimensional growth with
local randomness, distinguishing the KPZ class from, e.g., diffusive (Ed-
wards-Wilkinson) interfaces. Intuitively, the interface develops random
peaks of size O(t/3), and correlations spread over a spatial range O(t*/?)—a
highly nontrivial, super-diffusive scaling.

12.3.2 KPZ equation

The KPZ equation is a continuous model of random growth which was first
proposed non-rigorously in the physics literature [KPZ86], and then justified
mathematically. There are several justifications, including the one by Hairer
[Hail4]. The equation reads (ignoring the constant by the terms in the right-
hand side):

Oh(t, x) = Opeh(t,x) + (0gh(t,2))* + £(t,x),  t>0, zeR, (12.2)
where £ is the space-time white noise, that is, a Gaussian process with
E[&(t,0)E(t, )] = 3(t — )3(x — ).

The terms in the KPZ equation stand for the three types of interactions
driving the random growth process:

e The first term J,.h is a smoothing heat equation term, which is a
classical diffusion (independent growth) term.
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e The second term (th)Q is a slope-dependent growth term, which tends
to close high-slope gaps. This mechanism is visible in discrete models
which we will see in Section 12.4.

e The third term £(t,x) is a stochastic noise term which favors inde-
pendent growth at each location. This leads to roughening of the
interface.

Note that the equation (12.2) is ill-posed even in the sense of distri-
butions, since squaring a distribution 0,h is not well-defined. Instead, to
solve the KPZ equation in one space dimension x € R, one can formally
write h = log Z, where Z then solves the well-posed stochastic heat equation
(SHE) with multiplicative noise:

WZ(t,x) = 0pe Z(t,x) + £(t, ) Z(t, x).

The stochastic heat equation is linear in Z, and there are no issues with
defining the solution. The passage from h to Z = exp(h) is known as the
Cole-Hopf transformation. It is not rigorous either, but was used prior to
[Hail4] to define what it means to have a solution to (12.2).

12.3.3 First discoveries

One of the most striking discoveries is that the one-point distribution
of these fluctuations, when the growth starts from the so-called droplet (or
narrow wedge) initial condition, is governed by the GUE Tracy—Widom law,
rather than a normal law. The Tracy—Widom distribution (for Gaussian
Unitary Ensemble, GUE) describes the fluctuations of the largest eigenvalue
of a random Hermitian matrix. In the KPZ class, the same distribution
emerges in the long-time limit for a wide range of models and initial con-
ditions. For example, in the Totally Asymmetric Simple Exclusion Process
(TASEP) with step initial data (corresponding to the narrow wedge), the
height at the origin, when centered and scaled by t/3, converges in law to
the Tracy-Widom GUE distribution [Joh00], [Rem22]. This was the first
rigorous confirmation of 1/3 fluctuations in a random growth model. Such
behavior is believed to be universal: many other integrable models (polynu-
clear growth, last-passage percolation, directed polymers, etc.) exhibit the
same long-time distribution and scaling exponents.

In the next Section 12.4, we will discuss a particular semi-discrete ran-
dom growth model — the Polynuclear Growth (PNG).
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12.3.4 Effect of initial conditions

Crucially, the exact form of the limiting distribution depends on the ini-
tial condition of the growth process. Different symmetry classes of random
matrices appear:

e Curved (droplet) initial data: Starting from a narrow peak (often
called narrow wedge or droplet initial condition), the height fluctua-
tions follow the Tracy—Widom GUE distribution in the ¢ — oo limit.
This corresponds to the unitary symmetry class (e.g. complex Hermi-
tian matrices).

e Flat initial data: Starting from a flat interface (e.g. all zero initial
height), fluctuations converge to the Tracy—Widom GOE distribution,
which is the law of the largest eigenvalue of a random real symmetric
(Gaussian orthogonal ensemble) matrices, with orthogonal symmetry.

e Stationary initial data: Starting from a two-sided Brownian or
otherwise stationary initial profile, the fluctuation distribution is again
non-Gaussian but neither GOE nor GUE. In this case one obtains the
Baik—Rains distribution, often denoted Fy, which was first derived by
Baik and Rains for a stationary last passage percolation model [BROO].

12.3.5 Remark: Gaussian Free Field in KPZ universality

The KPZ equation (12.2) can be posed in any space dimension:
Oth(t,x) = Dh(t,x) + (Vh(t,z))? + £(t,z),  t>0, zeR%

where D is a second-order differential operator, and V is the gradient. In
d = 2 case, the operator D can have one of the two signatures:

D=A or D=08;-0,.

These two cases are known as isotropic and anisotropic KPZ equations,
respectively.

The isotropic KPZ equation is much more mysterious than the anisotropic
one. In the anisotropic case, it is believed that the fluctuations scale with
exponent 0 (as opposed to 1/3 for one dimension), while in the isotropic
case, even the hypothetical fluctuation scaling exponent is debated.

Further evidence for the anisotropic case is the existence of exactly solv-
able growth models in this class (e.g., [BF14]), which have logarithmic fluc-
tuations. Moreover, their fluctuations are governed by the Gaussian Free
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Field (GFF), which we encountered earlier in Lecture 9. Moreover, the
GFF should be the stationary distribution for the anisotropic KPZ fixed
point (Markov process which should be the long-time scaling limit of the
anisotropic KPZ equation).

Back to random matrices, consider the following question:

Can we imagine a 2-dimensional random growth model on ran-
dom matrices, which will look like the 2-dimensional anisotropic
KPZ equation? It would have random growth features, where
some 2-dimensional surface is growing, and will have the GFF
fluctuations.

We know an object in random matrices with GFF fluctuations — the
height function of the corners process. So, a natural guess is to take the
Brownian motion on matrix elements, and look at the evolution of the cor-
ners eigenvalues. However, the evolution of the eigenvalues of all corners
is not going to be Markov. A workaround is the construction by Warren
[War07], which produces the relevant Markov process on the full interlacing
corners configuration.

12.4 Polynuclear Growth and Last Passage Perco-
lation

12.4.1 Definition and single-layer PNG

We start with the single-layer PNG model on the real line. The interface
height h(t,x) evolves in continuous time ¢ > 0 over the spatial coordinate
z € R and has piecewise-constant plateaus with sharp upward steps. In
other words, h(t,z) is piecewise constant in z, and takes integer values.

Dynamics. The evolution is described by two basic ingredients:

1. Nucleation events: At random times and locations (¢, z) in the plane,
a new “island” of height 1 is born atop the existing surface. Each
newly born island sits just above h(t,x), creating a step of height 1 at
the precise point x and time t. We assume that the nucleation events
form a Poisson process in space-time (¢, ).

2. Lateral spread: Once an island is created at height k+1, its boundaries
spread outward (to the left and right in x) with speed 1. Thus a step
boundary moves in both directions until it merges with another step
boundary or nucleation event. When the islands merge, the height
becomes flat at this point.


https://lpetrov.cc/rmt25/rmt2025-l9.pdf
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See Figure 12.2 for an illustration of the single-layer PNG model. See also
Figure 12.3 for an evolution of the nucleation events, each of which spreads
at speed 1.

J—[I_lf

X

Figure 12.2: Polynuclear Growth (PNG) model interface.

X

Figure 12.3: Single-layer PNG: Nucleations (black dots) appear randomly
in the (¢,z) plane according to a Poisson process. Each nucleation creates
an upward step of height 1. The boundary of each newly created island
expands laterally at speed 1.

Initialization. One typically imposes an initial condition h(0,z) on the
spatial axis (e.g., a single spike or droplet, or a flat interface). The flat
interface is h(0,x) = 0 for all z € R, and the droplet is a single upward step
at © = 0 with height 1. In the droplet case, we also set h(0,z) = —oo for
x # 0, for convenience.

12.4.2 Multiline PNG

The multiline version of PNG tracks multiple height levels by stacking in-
terfaces at multiple layers, hi(t,z). A merging event at layer k produces a
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nucleation event at layer k + 1. So, the nucleation at h; is powered by the
Poisson process, while the nucleation at each hy, k > 2, is powered by the
merges at hi_1. The initial condition is assumed to satisfy

h1(0,2) > ha(0,2) > - -+, for all x € R.

This ordering is preserved by the evolution, see Problem 12.5.1.

We see that the evolution of ho, hs, ... is just a function of the full space-
time evolution of h;. However, at fixed time ¢, the functions hy(t,-) cannot
be determined just by hq(t, ).

The evolution of all the h;’s can be modeled on the same Poisson process
plot, by looking at “shadow lines”, the lines of the second, third, etc. orders
arising when two lines of the previous order merge.

12.4.3 KPZ mechanisms in the PNG growth

Let us compare the single-layer PNG growth with the ingredients of the
KPZ equation (12.2):

e Independent nucleation events in the PNG model correspond to the
stochastic noise term £(¢, ) in the KPZ equation.

e The lateral spread of step boundaries in PNG is akin to the slope-
dependent growth term (9,h)? in KPZ. Indeed, if the slope is large,
the growth at a given point happens with higher speed.

e The diffusion smoothing mechanism is not quite visible, but one can
think of it as the effect of the nucleation events, which are spread out
in space and time.

12.4.4 Last Passage Percolation (LPP)

Let us now describe the height function hj (¢, z) of the top layer of the PNG
model as a percolation problem in the Poisson environment. Consider a
Cartesian coordinate system with axes v and v. Let ¢ represent the diagonal
“time” axis, defined as t = v + v. Now, imagine a Poisson point process
P of intensity 1 in the upper half-plane {(u,v) : ©v > 0,v > 0}. For two
points (u1,v1) and (ug,ve) with u; < ug and v1 < ve, an up-right path from
(u1,v1) to (ug,v2) is a continuous curve moves only rightward (increasing u)
or upward (increasing v). The weight of a path is defined as the number of
Poisson points it collects along the way.
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The last passage time P[(u1,v1) — (ug,v2)] is defined as the maximum
weight among all up-right paths from (uq,v1) to (uz,vs):

Pl(ur,v1) = (uz,v2)] = max #{Poisson points collected by 7}
mi(u1,v1)—(u2,v2)

This maximum is always attained by some piecewise linear path and repre-
sents a random variable that depends on the Poisson environment P.

Proposition 12.5. For the PNG model with the droplet initial condition,
the height function hy(t,x) at position x and time t can be expressed as:

hi(t,z) = P[(0,0) = (u,v)]

where the coordinates (u,v) satisfy u+v =t and u—v = x. In other words,
the point (u,v) lies on the diagonal “time” line t = u + v at the spatial
position corresponding to x = u — v.

Proof. See Problem 12.5.2. 0

12.4.5 Topics to continue

e Multipath LPP and multi-layer PNG: hy + ...+ hi (with the droplet
initial condition) has the same distribution as P®*)[(0,0) — (t +z,t —
x)], the k-path point-to-point LPP distribution.

e Connection to the Airy line ensemble — PNG with the droplet initial
condition converges to the Airy line ensemble. (Same it true of the
LPP, by the mapping.) So, the PNG/LPP with the droplet initial
condition is related to Hermitian symmetric random matrices.

e PNG with flat initial condition / LPP in the point-to line regime con-
verge to the GOE Tracy-Widom distribution. This initial condition is
somehow related to real symmetric random matrices.

e The full scaling limit — the flat initial condition version of the Airy
line ensemble — is less understood. In particular, its Gibbs property
is not quite clear.

e Multipoint PNG fluctuations are asymptotically described by the KPZ
fixed point Markov process [MQR21], and, in full generality of fluctu-
ations, by an object known as Directed Landscape [DOV22].

e Possible next item to explore: Mapping LPP to the Wishart-Laguerre
ensemble.
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12.5 Problems

12.5.1 PNG ordering

If the initial conditions at time 0 of the multiline PNG satisfy
h1(0,2) > ha(0,2) > - -+, for all x € R,
then show that they continue to satisfy the same ordering at all times ¢ > 0.

12.5.2 PNG and last passage percolation

Prove Proposition 12.5.



Chapter 13

Matching Random Matrices
to Random Growth I

13.1 Recap

In the last lecture, we discussed various random growth models, and univer-
sal KPZ objects:

e Airy line ensemble which arises as the scaling limit of the Dyson
Brownian motion.

¢ KPZ Equation as a universal continuous random growth model.

e Polynuclear growth model (PNG) as a discrete analogue of the
KPZ equation.

Then we briefly mentioned how the PNG model matches to a last-passage
percolation (LPP) model in R%, driven by the Poisson point process as
noise. In this lecture, we are going to explore a different LPP model which
is defined on cells of Z2,, and match it ezactly to the Wishart random
matrix model which we have seen before in passing. This matching is due to
Dieker and Warren (2009) [DWO08], who proved it in the context of deformed
random matrix spectra, as suggested in [BP08|. The key to this matching is
a dynamical perspective on both the LPP and the random matrix models,
which allows us to match Markov chains in the two models, and not simply
the distributions.

Throughout the discussion, we will consider the “spiked”, multiparame-
ter models, which naturally include finite-rank deformations.

188
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13.2 The spiked Wishart ensemble

13.2.1 Definition of the spiked Wishart process

Recall that a (complex) Wishart matriz M of dimension n with ¢ degrees of
freedom (and identity covariance) can be represented as M = X X*, where
X is an n x t random matrix with independent complex Gaussian entries.
Clearly, M is a positive-semidefinite Hermitian matrix of size n x n. The
eigenvalues (A1,...,Ay) (with Ay > -+ > Ay > 0) have the joint density of
the Laguerre orthogonal polynomial ensemble (5 = 2). Now we introduce a
more general model where the covariance of the underlying Gaussian matrix
is not identity but has a perturbation (a “spike”).

Definition 13.1 (Generalized Wishart ensemble with parameters (m,7)).
Fix a positive integer n. Let m = (71,...,m,) be a fixed n-tuple of positive
real parameters, and let 7 = (71,72, ...) be a sequence of nonnegative real
parameters (possibly infinite in length). We define an array of complex
random variables {A4;; : 1 < i < n,j > 1} such that under the probability
measure P™7:

e The A;; are independent for all 1 <7 <n and j > 1.

e Each A;; is a complex Gaussian With mean 0 and variance Var(4;;) =
L (ie. RA;;, 345 ~ N(0 independent).

T +75

» 2(m; +7r ))

For each integer t > 0, let A(t) denote the n x ¢t sub-matrix consisting of the
first ¢ columns of A. We then define an n x n random Hermitian matrix

M(t) == A{t) A(t)*,  t>0,

with the convention M (0) is the zero matrix. We call {M(t) : ¢t > 0} the
generalized Wishart random-matrix process with parameters (7, 7).

In particular, M (t) has the form

t
= Alm(Alm)y
m=1

where A(™) denotes the m-th column of A (an n-dimensional complex ran-
dom vector with independent entries of variance 1/(m; + 7,)). When all
m; = 1 and all 7; = 0, M(t) reduces to the classical complex Wishart(n, t)
with identity covariance.



CHAPTER 13. MATCHING RANDOM MATRICES TO RANDOM GROWTH 1190

Remark 13.2. The introduction of parameters m and 7 allows for finite-
rank deformations of the covariance: one can think of the m;’s as base-
line values (say m; = 1 for all but a few coordinates), and a finite number of
them being different from 1 corresponds to a finite-rank perturbation of the
identity covariance matrix ¥ (the directions in which m; # 1 are ”spiked”
eigen-directions). Similarly, 7; can be viewed as adding a rank-one per-
turbation associated with each column; if only finitely many of the 7; are
nonzero, that corresponds to having a finite number of distinguished sam-
ples (or boundary inhomogeneities in the equivalent percolation model, as
we will see).

We emphasize that M(t) depends on ¢ in a way that M (¢) and M (t —
1) are not independent but are coupled through shared columns. Indeed
M(t) = M(t —1) + AO(AD)* which is a rank-1 update of M (t —1).

Let us denote by Ai(t) > Aa(t) > -+ > A\, (t) > 0 the eigenvalues of M (t)
in non-increasing order (padded with zeros if ¢ < n, since rank(M (t)) < t).
We will use the notation sp(M(t)) = (A1(%),..., A (t)) for the spectrum of
M (t), viewed as a vector in the Weyl chamber W" = {x = (x1,...,2,) €
R™: 2y > 29 > -+ > x,}. We are particularly interested in the largest
eigenvalue process {\1(t) : t > 0}, i.e. the sequence of the top eigenvalue
as the number of samples ¢ grows. Our goal is to describe the law of this
process and to identify it with a combinatorial growth model.

Before stating the main result, we need a fundamental property of the
eigenvalue sequence sp(M (t)) as t increases, namely that it forms a Markov
chain in W™, See Problem 13.5.1.

We need another statement:

Lemma 13.3 (Interlacing; Problem 13.5.2). For eacht > 1, the eigenvalues
of M(t) and M(t — 1) satisfy the interlacing property:

M) > A(E—=1) > X2(t) > At —1) > - > A (t—1) > A\p(t) > 0. (13.1)
We denote the relation (13.1) by
A(t) = A(t—1). (13.2)

In other words, the eigenvalue Markov processes A(t), t = 0,1,2,... form
an interlacing array, where at each step of the Markov process, a new row of
the array is “revealed”. The interlacing property is parallel to the uniform
conditioning (Gibbs) property in the § = 2 corners. Moreover, one can
check (Problem 13.5.3) that in the null case m; = 1 and 7; = 0, the Wishart
eigenvalue process satisfies the uniform Gibbs property as well.
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13.2.2 Markov chain and transition kernel for eigenvalues

We say a random process { X (¢) : t > 0} taking values in W" is an inhomo-
geneous Markov chain if for each m < t, the conditional law of X (¢) given
(X(t—1)=24-1, X(t—2) =24-9,...,X(m) = z,,) depends only on x;_;
(and possibly on t). In other words, the process has the Markov property
but the transition kernel may depend on the time step t. In our case, since at
each step t a new column A®) with variance parameters {m;+#, : 1 < i < n}
is added, the transition law from M (¢t — 1) to M (t) will indeed depend on
the index ¢ through 7;. We denote by Q?ﬂ’t(a@,dy) the transition kernel:

for x € W" given as the eigenvalue vector of M(t — 1), ij‘i’t(x, -) is the
distribution of sp(M (t)).

The null case m; = 1 and #; = 0 of Q:ﬂ’t(:c, dy) was computed in [Def10],
see also [FRO6].

Theorem 13.4. Fiz an integer n > 1. Let m = (m1,...,7,) be a strictly
positive n-vector, and let T = (71, Ta,...) be any sequence of nonnegative
real parameters. Under the probability measure P™7, the eigenvalues of the
n x n generalized Wishart matrices {M (t) }+>0 form a time-inhomogeneous
Markov chain {sp(M(t))}+>0 in the Weyl chamber

Ww" = {x:(xl,...,xn)E]Rgolezxgz-'-zxn}.

More precisely, writing x = sp(M(t — 1)) and y = sp(M(t)), the one-step
transition law from time (t — 1) to t is absolutely continuous on the interior
of W" and can be factored as

n

Q?L?t(fﬂ, dy) = [H(Wﬁﬁt)}zﬁézi eXp(_(%t_l)Z(yi_xi)) x QU (x, dy),
i=1 T i=1
(13.3)

where
° Q(O) (x, dy) is the standard (null-spike) Wishart transition kernel, given
explicitly by

QO (z, dy) = 253;; exp(* > (yi— m) Loy dy,  (13.4)

=1

with A(z) = [[1<;cj<n(2i — z;j) the Vandermonde determinant.

o The function hy is the (continuous) Harish-Chandra orbit integral fac-
tor . n
(—1)(3)  det(eTmH)! .|

onl---(n—=1)! A(n)A(z)

hr(z) =
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Note that hr(0) = 1.
In particular, the chain starts from sp(M(0)) = 0 (the zero matriz).

Sketch of proof; see [DWO08]. First of all, random-matrix arguments [Def10],
[FRO6] show that the theorem holds for the null case m; = 1 and 7; = 0.
The Radon-Nikodym derivative of the transition kernel factors through the
diagonal entries of the matrix, and can be written in terms of the eigenvalues
via the HCIZ integral. This yields an explicit factor multiplying the null-case
transition density. O

Remark 13.5 (Problem 13.5.4). In order to see directly that the family
{Qfﬂ’t of transition kernels does indeed define Markov transitions (that

is, each Q;rflyt(x, -) is a probability measure for every z), one can use the
fact that
1.5 = det []—zl<z;]7

along with the Cauchy—Binet (or Andréief) identity:

| detli(e)] et (el s = det[ [ 6:)wy(2) ],

Applying this to (13.3)-(13.4) yields a sequence of integrals of the expo-
nential densities of the form e~ ("iT#)¥  This yields the normalizing factor
Hi, j(m + 7;), and confirms that each transition kernel integrates to one, in
line with the notation and factorization in Theorem 13.4.

The fixed-time distribution of the eigenvalues in the null case m; = 1
and 7; = 0 is given by the Laguerre orthogonal polynomial ensemble. For
example, for ¢t > n, we have

n

Prob(sp(M(t)) € dy) = %H(yl — yj)2 H yffne_yi. (13.5)
i<j 1=1

For the non-null case, see Problem 13.5.5.

13.3 The exponential LPP model

We now turn to a seemingly different probabilistic model: a model of random
paths in a grid with random weights. Fix an integer n. Consider an infinite
array of independent, nonnegative random weights {W;; : i > 1, 1 < j < n}
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defined under the probability measure P™", where each Wi;; is an indepen-
dent random variable with an exponential distribution of rate (m;+7;). Note
that E[W;;] = anlLfri' These rates (m; 4 7;) are chosen deliberately to mirror
the variance parameters of A;; in the generalized Wishart model (Definition
13.1).

We interpret {W;;} as random weights on the vertices of a directed lattice

in the first quadrant. Specifically, consider the set of lattice points

{G,j):i=1,...t,...,j=1,...,n}.

We say a path I' is an up-right path from (1,1) to (¢,n) if it is a sequence
of lattice points starting at (1,1) and ending at (¢,n), with steps either one
step to the right or one step up. Since each step either increases the column
index by 1 or the row index by 1, any such path from (1,1) to (¢,n) must
consist of (t — 1) right-steps and (n — 1) up-steps, for a total of (t +n — 2)
steps. We define the weight of a path I' to be the sum of the W;; along its
vertices:
W)= Y Wiy,
(,9)€T

where by (i,j) € I' we mean that the vertex (7,j) is visited by the path
I'. The random variable of interest is the mazimum total weight achievable
among all such paths, i.e.

L(t = ). 13.
(t.m) = max WD) (13.6)

We call L(t,n) the last-passage time to (t,n), in analogy with the usual
terminology of growth models (if we interpret I;; as random passage times
on a lattice, then the longest time to reach a certain site is given by the
maximal weight path).

Indeed, it is immediate from the definition that the random variables
L(t,n) satisfy the following random recursion:

L(i,j) = Wi +max{ L(i,j — 1), L(i —1,j) }, (13.7)

fori > 1,5 > 1, with boundary conditions L(¢,1) = 3",_, W1 and L(1,4) =
Zfz:l Wie. The recursion (13.7) expresses that the optimal path to (4, j)
either comes from below (then last step is down, contributing Wj; plus the
optimal weight to (i, j—1)) or from the left (last step is right from (i —1, 5)).
It is the fundamental equation of growth models, which is a part of the
Robinson—Schensted—Knuth insertion algorithm in combinatorics.
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Figure 13.1: A portion of the lattice with vertex-weights W; ; and one up-
right path.

Remark 13.6. The quantity L(t,n) appears in many contexts besides the
LPP. Namely, it is also the total service time in a series of n exponen-
tial queueing servers with ¢ customers (the Jackson network interpretation
[Bar(01]), and it is a prototype of models in the KPZ universality class (of-
ten called the exponential corner growth model). For the random growth
interpretation [Joh00], define the growing percolation cluster as

Fr={(i,j): L(j,i) <t} CZ%,, 7 €Rx.

Then this cluster grows by adding 1 x 1 boxes after exponential random
times, when each rate m; + 7; exponential clock starts ticking when the
cluster reaches the two adjacent vertices to (i, j).

Let us define the whole vector of last-passage times to the bottom row at
column ¢ as

Z(t) = (L(¢,1), L(t,2), ..., L(t,n)) € W",

where we list the values in increasing order L(t,1) < L(t,2) < --- < L(t,n).!
In particular, L(t,n) is the largest component of Z(t). One readily sees from

the recursion (13.7) that the sequence {Z(t) : t > 0} is a Markov process in
wr.

Remark 13.7. The process Z(t) is not the same as the Markov process of
the spectra of the Wishart matrices M(t).

"We have L(t,1) < --- < L(t,n) almost surely because giving the path more freedom
to move down can only increase the maximum weight. This is easily checked from (13.7).
Thus Z(t) € W" indeed.
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In the next section, we will consider a discrete version of the LPP model,
and consider a crucial bijection — the celebrated Robinson—Schensted—Knuth
(RSK) correspondence. In the next Chapter 14, we will use this to complete
the proof of the matching between the Wishart process and the LPP with
exponential weights. That is, we are after the following result (cf. Re-
mark 13.7):

Theorem 13.8 ([DWO08]). The joint distribution of the last-passage times
L(1,n), L(2,n),...,L(t,n) (13.8)

1s the same as the joint distribution of the largest eigenvalues of the n X n
Wishart matrices

sP(M (1)) maxs SP(M(2))max;, - - -, SP(M () ) max- (13.9)

Remark 13.9. It is important to note that neither sequence (13.8) nor
(13.9) is a Markov process.

13.4 Geometric LPP and Robinson-Schensted-Knuth
correspondence

13.4.1 Geometric LPP

Throughout this section, we are interested in the last-passage percolation
with discrete weights W;; € Z>o, which have the geometric distribution

Prob(Wij = k) = (a;b;)*(1 — a;b;),  k=0,1,.... (13.10)

The last-passage times are defined by (13.7), the same as in the exponential
case.

13.4.2 Bijective mapping of arrays via toggles

We are now going to present the Robinson-Schensted-Knuth correspondence
via the operation called toggle. This exposition is different from the usual
discussions in e.g., [Sag01], [Ful97], and follows these notes by Sam Hopkins.
Fix t,n, and consider the array W = {W; }1<i<t,1<j<n of nonnegative inte-
gers. We can think of W as a realization of the geometric environment, but
for now let us assume that W is a fixed array. See Figure 13.1 for the order
of indices.


https://www.samuelfhopkins.com/docs/rsk.pdf
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We are going to inductively construct a bijection RSK between the array
W and another array R = {Rij}lgigt,lgjgn of nonnegative integers, which
is ordered:

Rij < Rijy1,  Rij < Riyiy,  foralli,j.

Note that this ordering means that the diagonals in R interlace.
To define RSK, we first define an elementary operation called toggle and
denoted by T

Definition 13.10 (Toggle). The toggle operation is a map T which takes
in a nonnegative integer w and a triple (A, x, ) of sequences of nonnegative
integers satisfying interlacing

A=K =< U

The lengths of the sequences are differ by 0 or 1, and if necessary, we pad
the sequences with 0’s to make the interlacing make sense. The output of T
is a triple (A, v, ), where A and p are not changed, and v is obtained from
A, i, &, and w as follows:

v1 = w+max (A, p1), v; = max(Aq, pi)+min( N1, i—1)—Ki—1, for ¢ > 2.
Define |k| := k1 + k2 + - - -, and similarly for \, u, v
Proposition 13.11. If (A\,v,u) = T(w; A\, k, 1), then X < v = p, and
| =w+ Al + [u| = [x].
Proof. See Problem 13.5.6. 0

Now, define R = RSK(W) as follows. We will build R by sequentially
modifying the array W, starting from the bottom-left corner (1, 1) and mov-
ing by adding one box at a time. We represent the partially filled R array
as a collection of interlacing sequences. Let R(%) denote the already con-
structed part of R, where we are adding a box (7, j). Then, we modify the
diagonal containing (i,5) by applying the toggle operation to the weight
w = W; ; and the three diagonals

7]) {Rz k+1,5— k}k’Zl’ (27]) {R’L ’Jk)j k+1}k21a K(i’j) = {Rz( k,j— k}k>1

The next statement is straightforward:
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R31 | Raa

Ro1 | Roo | Ras @
N

Ry | Ri2 | Ri3 | Ria

El=IE]

Figure 13.2: Tllustration of the RSK toggle operation, with w = Way being
added to the array R, and A = (Ra3, R12), k = (R13), it = (R14).

Proposition 13.12. The toggle operation T is a bijection
Zzo X {(\ k)t A=k < p} < {(v, A\ p): A <v = pu}.

Consequently, the map RSK is a bijection between nonnegative arrays W
and ordered nonnegative arrays R.

Proposition 13.13. The bijection RSK does not depend on the order of
adding the boxes to the array R.

Proof. See Problem 13.5.7. O
Remark 13.14. The map RSK is transposition-equivariant, meaning that

if R =RSK(W), then RT = RSK(W ).

13.4.3 Weight preservation

Define the row and column sums in W = (Wi;)1<i<t,1<j<n by

n t
ToOwW; = E Wij, COlj = E Wi]’.
j=1 =1

Also define the diagonal sums in R by

min(z,5)—1

dlagh‘] = Z R’L—k,j—k’
k=0
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Proposition 13.15 (RSK weight preservation). Under the bijection RSK,

we have . ‘
J 1
diag, ; = Z col;, diag; , = Z TOW;/.
j'=1 /=1
In particular, the last diagonal sum diag, ,, is equal to the total weight
of the array W, which is the aggregate of the row sums or the column sums,
as it should be.

Proof of Proposition 13.15. We can prove this by induction by adding one
box at a time. Define the partial row and column sums as

k k
I‘OWi’]€ = Z Wija COlkJ‘ = Z W”
j=1 i=1

We claim that for partial arrays in the process of RSK, the equalities between
aggregated partial row/column sums and diagonal sums hold, where we take
the column sum if the boundary of a partial array is horizontal, and the row
sum if the boundary is vertical. This is our induction claim, and it clearly
holds for the empty array.

Now, consider adding a box (4, j) to the array R. For the diagonal sums,
we have the identity due to Proposition 13.11:

dlagm = diagi7j_1 + diagi_l’j — diagi_l’j_l =+ WfL] (1311)

Now, using the induction hypothesis for diag; ;_;, diag;_, ;, and diag;_; ;_1,
we see that identity (13.11) simply represents the fact that diag,; is the
“cumulative distribution function” of the array W, or, which is the same,
that W is the second mixed partial (discrete) derivative of the diagonal
sums. This completes the proof. O

In the next Chapter 14, we will consider the effect of applying the RSK
to the array W of independent geometric random variables.

13.5 Problems

13.5.1 Wishart Markov chain

In the null case m; = 1 and 7; = 0, show that the process sp(M (t)) defined
in Section 13.2.1 is a Markov chain.

Hint: Use diagonalization and the fact that the Wishart matrix distribution
is invariant under conjugations by unitary matrices, similarly to how we did
it for the Dyson Brownian motion in Chapter 10.
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13.5.2 Interlacing
Prove Lemma 13.3.

Hint: You can use the minimax definition of the eigenvalues to show the
interlacing.

13.5.3 Gibbs property

Show that in the null case m; = 7; = 0, the Wishart eigenvalue pro-
cess from Section 13.2.1 has the Gibbs conditioning property: when con-
ditioned on the values of A(t), the joint distribution of all the eigenvalues
{A(s): s=0,1,...,t — 1} is uniform in the Gelfand—Tsetlin polytope deter-
mined by A(¢) and the interlacing.

13.5.4 Transition kernels integrate to one

Complete the argument outlined in Remark 13.5 that the transition densities

;rfrl ((z,dy) integrate to one in y.

13.5.5 Distribution of the eigenvalues

Find the density Prob (sp(M(t)) € dy) /dy of the spiked Wishart ensemble at
an arbitrary fixed time ¢. For this, you can multiply the transition operators
Q7" ; from Theorem 13.4.

13.5.6 Weight preservation under toggle

Prove Proposition 13.11.

13.5.7 RSK independence of order

Prove Proposition 13.13, which states that the bijection RSK does not de-
pend on the order of adding the boxes to the array R.

Hint: Toggle operations commute when they act on non-overlapping diag-
onals.

13.5.8 Asymptotics: BBP phase transition

Review the proof of the BBP transition for a rank-1 spiked Wishart matrix
(or the rank-1 inhomogeneous corner-growth model). Show how to compute
the large-n limiting distribution of the top eigenvalue in the critical case
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Identify the limit law as a deformed Airy kernel (or equivalently a shifted
Airys process).



Chapter 14

Matching Random Matrices
to Random Growth 11

14.1 Recap

14.1.1 Main goal

In the previous Chapter 13, we began establishing a remarkable correspon-
dence between two a priori different objects:

e The spiked Wishart ensemble: an n x n Hermitian random-matrix
process {M(t)}+>0 whose entries come from columns of independent
Gaussian random vectors of suitably chosen covariance.

e An inhomogeneous last-passage percolation (LPP) model: an array
{W; ;} of exponential random weights on a portion of the two-dimensional
lattice, whose last-passage times L(t,n) match the largest eigenvalues
of M(t), jointly for all t € Z>¢.

This equivalence, originally due to [DW08] (following [Def10], [FR06]; see
also [Bar01], [Joh00] for earlier results of this kind), can be fully understood
by passing to a discrete version of LPP with geometric site-weights and then
applying the Robinson—Schensted—Knuth (RSK) correspondence.

201
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14.1.2 Spiked Wishart ensembles and the largest eigenvalue
process

We defined the generalized (or spiked) Wishart matrix M () of size n x n
by setting

M(t) = > AM(AM)”
m=1

where {A(m) oo_, are ii.d. complex Gaussian column vectors of length n,
with

1
Var(A™) = .
Here, # = (m1,...,7,) and @ = (71,72, ...) are positive and nonnegative

parameters, respectively. Writing A\ (¢) > --- > A, () > 0 for the eigenvalues
of M(t), we then saw:

1. The vectors A(t) = (A1 (t), ..., A(t)) form a Markov chain in the Weyl
chamber W" = {x1 > --- > x, > 0}.

2. There is an interlacing property: each update M (t — 1) — M (t) via
the rank-one matrix A®) (A(t))* forces A\(t) to interlace with A(t — 1):

M) > M(E—1) > A(t) > - > A(t—1) > Ma(2).

In Chapter 13, we wrote down the transition kernel from A(t—1) to A(¢):

Theorem 14.1 ([DWO08]). Fiz an integer n > 1. Let m = (m1,...,7y)
be a strictly positive n-vector, and let 7 = (m1,72,...) be any sequence
of nonnegative real parameters. Under the probability measure P™7  the
eigenvalues of the n x n generalized Wishart matrices {M(t)}+>0 form a
time-inhomogeneous Markov chain {sp(M (t))}t>0 in the Weyl chamber

W" = {x:(xl,...,xn)eRgozazlszZ-"an}.

More precisely, writing x = sp(M(t — 1)) and y = sp(M(t)), the one-step
transition law from time (t — 1) to t is absolutely continuous on the interior
of W™ and can be factored as

i=1 w (@) i=1
(14.1)
where
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° Q(O) (aj, dy) is the standard (null-spike) Wishart transition kernel, given
explicitly by

QO (z, dy) = ig; exp(— > (i - wi)) Loy dy,  (14.2)

=1

with A(2) = [1<;cj<n(2i — 2;) the Vandermonde determinant.

e The function hy is the (continuous) Harish-Chandra orbit integral fac-

tor n
(—1)E)  det(e™H)!
ol (n=1)! A(r)A(z)

hr(2) =
Note that h,(0) = 1.

In particular, the chain starts from sp(M(0)) = 0 (the zero matriz).

14.1.3 Inhomogeneous last-passage percolation

On the random growth side, we considered an array of site-weights {W} ;}; j>1
such that each W ; is exponentially distributed with rate m; + 7;. For ev-
ery integer t > 1, we define L(t,n) to be the maximum total weight of all
up-right paths from (1,1) to (¢,n):

L(t,n) = max Z Wi ;.

I:(1,1)—(¢,n) (i.4)er

One checks that L(-,n) satisfies a simple additive recursion:
L(i,j) = Wi; + max{L(i — 1,j), L(i,j — 1)},

The main claim which we show in today’s lecture is the equality in distri-
bution:

(L(1,n), L(2,n), ..., L(t,n)) 4 (Ai(1), M(2), ..., A1), (14.3)

14.1.4 RSK via toggles: definitions and weight preservation

The Robinson-Schensted-Knuth correspondence (RSK) was the main new
mechanism in Chapter 13. In our setup, we adopt a toggle-based view-
point: we encode arrays by diagonals and successively toggle the diagonals
to achieve a fully ordered array R. The key to how RSK links LPP and
random matrices is its weight preservation property.
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We work with arrays W = {Wij}lgz‘gt, 1<j<n and R = {Rijhgigt, 1<j<n’
where W is a nonnegative integer array and R is an ordered array, that is,
R;; < R;j+1 and R;; < Rjyq1; for all 4,5. Using RSK, we showed in
Chapter 13 that there is a bijection which maps W to R.

We also started to prove the following result, which we now complete:

Theorem 14.2 (Weight preservation). Let W = {W;;} be a nonnegative
integer array, and R = RSK(W). Denote

n
row; = E Wi,j, COlj = E WZ'J'
7j=1

(which are essentially the cdf’s of the array W), and for R define the di-
agonal sums starting at each (i,j) and going diagonally down and to the

right:
min(z,5)—1

diagi,j = Ri g j—k-
k=0

Then for each 1 < j<mn and1 <i<t, we have

J i
diag, ; = Z colyy, diag, , = Z TOW . (14.4)
m=1

m=1
In particular, the total sum of W over all cells equals the total sum of R
over all cells.

Proof (sketch). One inductively builds R by adding the sites (i,7) one at a
time. Each toggle modifies exactly one diagonal. After adding a box (i, ),
the diagonal-sum identity

diag; ; = diag;_; ; +diag; ;_ — diag;_; ;1 + Wi

holds, expressing that W captures the discrete “mixed second differences”
of the diagonal sums in R. Thus, the cdf’s of W must coincide with the
diagonal sums of R, as desired. O

14.2 Distributions of last-passage times in geomet-
ric LPP
14.2.1 Matching RSK to last-passage percolation

Recall that we are working with the independent geometric random variables

Prob (Wz’j = k?) = (aibj)k(l - aibj), k= O, 1, ceen
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The parameters aq,...,a; and by, ..., b, are positive real numbers, and we
assume that a;b; < 1 for all 7, j, so that the random variables W;; are well-
defined. Let R = RSK(W).

Lemma 14.3. The distribution of the top row of the array R, Ry 1, ..., Rin,
is the same as the distribution of the last-passage times L(t,1),...,L(t,n),
defined in the same environment W = {W;;}.

Note that this statement does not rely on the exact distribution of W,
and holds for any fixed or random nonnegative integer array W.

Proof of Lemma 14.3. The values in R update according to the toggle rule.
Denote by R the array obtained after toggling the i-th row (and all pre-
vious rows) of W. Then, the top row of R updates as

% i—1 %
R} = Wy +max {R{"}), R},

By the induction hypothesis, we have

R“Y=r(i-1,5), RY  =L(j-1).

i1 ij-17=
This implies that L(i, ) = RZ(ZJ), and we may proceed by induction on j and
then on 1. ]

Remark 14.4. The correspondence between R, ; and L(t, j) holds only for
the top row of the final array R = R"). For rows below the top row (i.e.,
for Ry ; with k < t), there is no such direct correspondence with one-path
last-passage times. On the other hand, the whole array R can be defined
through multipath last-passage times. This is known as Greene’s theorem
[Sag01] for RSK, and falls outside the scope of this course.

14.2.2 Distribution in RSK

Fix t,n, and consider the following quantities in a diagonal of the array
R =RSK(W):

M=Rip, =R 1pn1, .., = Re_ni11.

Clearly, A1 > Ao > -+ > X\, (we pad diag’s by zeroes if necessary), and
these are integers. We regard A = (A1,...,\,) as an integer partition, or
a Young diagram. Denote by T'(\) the space of all semistandard Young
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tableaur (SSYT) of shape A, that is, all collections of numbers r;; which
interlace as

Tig < Tij+1, Tij < Ti+1,55 =10t 7=1,...,m Tt—k+1n—k+1 = Ak, k=1,...,n
We are after the distribution of the random Young diagram .

Definition 14.5 (Schur polynomial). For a partition A = (A1, ..., \,) with

AL > Ay > -+ > A\, >0, the Schur polynomial sy(z1,...,z,) in n variables
is defined as:

det( Agtne J)

det(a] )

zjl_

+n—
det( v J)zj 1 (14 5)

SA\\T1,...,T
(@1, o2 H1§i<j§n(xl_xj)

i,7=1

Alternatively, the Schur polynomial has a combinatorial interpretation as a
sum over semistandard Young tableaux:

Tt,n—11trt—1,n—2F...F+Trt—n+2.1 Te,2+tri—1,1 Tt,1
AtoArtn [(Tn-1) " " ”+ T2 T
Sx(T1,...,xp) = g x, = — ,
In T3 i)

TeT(N)
(14.6)
where T'(\) is the set of all semistandard Young tableaux of shape A, as
defined above.

From (14.5), it is evident that sy(x1,...,%,) is a symmetric polynomial
in x1,...,2x,. This is highly non-obvious from the combinatorial definition
(14.6). See Problem 14.5.2 for a proof of the equivalence of the two defini-
tions.

The Schur polynomials satisfy the stability property:

sx(1y. .. xp—1) if Ay =0,
sx(z1,...,Zp—1,2 oy = 14.7
A(@ o ")‘mn_o {0 otherwise. (14.7)
Theorem 14.6. Let pn = (p1,...,1n) be a fized Young diagram. Then,
for R = RSK(W), where W is the array of independent geometric random
variables, we have

t n
Prob (Rey = pt1, ..., Ri—ny110 = in) = H H (I1—asbj)-su(a, ... ae)su(br,. .., by).
i=1j=1
(14.8)
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Note that if ¢ < n, then g1 = ... = pyp = 0, as it should be. Note
also that the statement of the theorem implies that the expressions in the
right-hand side of (14.8) sum to one over all uy > ... > p, > 0, which is the
celebrated Cauchy identity for Schur polynomials. One can alternatively
establish the Cauchy identity from the Cauchy-Binet formula, using the
determinantal formulas (14.5). See Problem 14.5.4.

Proof of Theorem 14.6. To get the probability (14.8), we need to sum the
probability weights of all ordered arrays R = (R;j)i<i<t, 1<j<n, such that

Rt,j = M1, Rt—l,j—l =2, ..., Rt—n-i—l,l = ln.

Denote the set of such arrays by R(u). Each R € R(u) has a probability
weight which we can express (thanks to the RSK bijection) in terms of the
original array W, so in terms of the parameters a; and b;.

Our first observation is that the probability weight of R = RSK(W)
depends only on its diagonal sums diagy ,,,...,diag, ,,diag,,,_1,...,diag, ;
along the right and the top borders. Indeed, knowing these diagonal sums,
we know (by the weight-preservation property of RSK, Theorem 14.2) the
row and column sums of W. However, the joint distribution of all elements
of W has the following form:

t n
Prob (W;; = k;j; for all 4, j) :HH 1 — a;bj) - (a;bj)*i
i=1j5=1

(14.9)

Thus, we now need to sum expressions (14.9) over all R € R(u), and we use
the fact that the row/column sums in W are differences of diagonal sums
in R, to get the Schur polynomials in the combinatorial form (14.6). This
completes the proof of Theorem 14.6. O

14.2.3 Conditional law in RSK

Theorem 14.7 (Conditional law of p in (¢,n) and (¢t + 1,n) arrays). Let
W be an array of independent geometric random variables with parameters
a;bj, and R = RSK(W). Define the Young diagrams B = (g, )
and p1") = (v, wy,) from the diagonals of R as:

(tn) = Ry p, Mgt’n):Rt—l,n—la T
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(t+1m) (t+1m) 1,
Ml — Rt—i—l,n’ MQ — Rt,n—l7 ceey MgL n) — Rt+2—n,1

Then the conditional law of pt1™) = v given ™) = 1 is given by:

(t+1,;n) _ (tyn) _ o . & _ 0. |V|—W‘.Szj(b17 . 7bn)
49 —)

(14.10)
where 1,,-,, is the indicator that v interlaces with p, and |p| = Y ;| p; is
the total number of boxes in the Young diagram u, and same for v.

j=1

Proof. We begin with the unconditional distributions from Theorem 14.6:

Prob (u(t’") = u) = H

(1 —asbj) - sp(at, ..., ar)su(bi, ..., by)

n

1=1j5=1
(14.11)
t+1 n
Prob (:u(t+1’n) = V) = H H(l - alb]) ’ Sl/(ala s ,Qt+1)Sy(b1, s 7bn)
i=1j=1
(14.12)

When moving from (¢,n) to (t+1,n), the resulting Young diagrams must
interlace. Indeed, this is a consequence of the ordering in the array R. To
derive the conditional law, we start with

Prob (H(t+1,n) — ,U,(t’n) _ H)
(t+1,n) _ (ty;m) _ _ )
Prob (/1/ =V ‘ 12 - ,U,> - Prob (,U(t’n) _ M)

It remains to compute the joint probability Prob (,u(H'l’”) =y, pbn) = ,u).
This joint probability readily follows from an argument as in the proof of
Theorem 14.6 (while keeping in mind the combinatorial formula for the Schur
polynomial (14.6)). Namely, we sum over arrays R**1 of size (t 4+ 1) x n,

and thus we have

t+1 n
Prob (u(t“’”) = v, plt") = u) =[ITIQ - aiby)
i=1 j=1
X8y(b1,...,bn)sulat, ... a) - aL’ﬁI'“l 1.

In particular, summing over u, we get the marginal distribution (14.12) for
v. To complete the proof, we simply divide the joint probability by the
unconditional probability (14.11) for pu. O]
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14.3 Passage to the continuous limit

14.3.1 Key elementary lemma

In this section, we will pass from the geometric LPP to the exponential LPP.
The key elementary lemma is the following scaling limit of the geometric
random variables:

Lemma 14.8. Let W be a geometric random wvariable with parameter p,
that is,
Prob(W = k) = (1 — p)p”, E=0,1,....

Then, as p — 1, we have
(1-p)W % Exp(1), (14.13)
where Exp(1) is an exponential random variable with parameter 1.

Proof. This immediately follows from the reverse cdf’s:

_z_ p—l —x

Prob((1 —p)W > z) = Prob(W > 1%17) =pl» —— e ¥ x> 0.

This completes the proof. O

Observe that if X is an exponential random variable with parameter 1,
then aX is an exponential random variable with parameter 1/a.

14.3.2 Scaling the environment W

Let us scale the parameters of the environment a;, ¢ = 1,...,¢ and b,
j=1,...,n, as follows:
ﬁ'i Uy
aZ:].—M7 bj:l_M’ M — oo.

Then, the independent scaled geometric random variables M ! - Wi;; jointly
converge to independent exponential random variables, since
T+ j

T TOMT) = (1-aib)Wi S Exp(1),

1-— aibj =
which implies that
M*1Wij i> (m; + 7Tj) Exp(1) ~ Exp(7; + 7Tj).

Thus, the scaled last-passage times M ' - L(¢,n) in the geometric LPP
model converge to the last-passage times in the exponential LPP model.
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14.3.3 Scaling the Schur polynomials

Recall that for a partition A = (A, ..., A,), the Schur polynomial sy(x1,...,zy)

can be expressed using the Weyl character formula as:
Aj+n—j

_ det(z;" " Y 1<ijen

_ (14.14)
det(z} ™ )1<i j<n

8)\(1'1, e ,xn)

We now establish the appropriate scaling. With M as our scaling pa-
rameter, we define:

\ = % fori=1,...,n, (14.15)
bjzl—ﬁ forj=1,...,n, (14.16)

where )\; are the scaled partition coordinates and f3; are fixed positive pa-
rameters.

We now compute the asymptotics of the Schur polynomial under this
scaling:

M M

e (1= 4)")

= . (14.18)

e ((1-41)")

AM
As M — o0, using the asymptotic expansion <1 — M) ~ e P we

e (1= 4)")

bi,...,b,) = 14.19
SA( b ’ ) H1§i<j§n (bi_bj) ( )

e (1= 3)"")

= — (14.20)
[Li<icj<n (%)
det (e=Pis
)
M) H1§¢<jgn(5j - Bi)

Sx(b1y. .., bn) = s <1—B1,...,1—Bn> (14.17)

obtain:
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14.3.4 Scaling the transition formula

Now we show how the conditional law (14.10) for the discrete geometric
RSK model scales to the continuous transition kernel (14.1) of the spiked
Wishart ensemble.

Recall the conditional law:

= bi,...,bn)
Prob (t+1,n) — (t,n) — — 1 b | | ‘N‘ Sl/( ) s Un ]
rob (1 w0 = ) = By [T —osaby oty S0

(14.10 revisited)
We use the scaling:

at+1:1—%]tw+1, bjzl—%, M — .
We also scale the partitions (eigenvalues):
~ M-z, v M-y,
where x = (z1,...,2,) and y = (y1,...,yn) are points in the continuous

Weyl chamber W”. The interlacing condition @ < v naturally translates to
the continuous interlacing condition < y, which is part of the standard
kernel Q) (z, dy) in (14.2).

Let’s analyze the terms in (14.10) under this scaling.

Prefactor

-lj(l_at+lbj) = ﬁ (1 - (1 - 7?;\}1) ( )) li[ (WHI 75y O(M‘2)> :

In the limit, this term corresponds to the measure scaling factor. When
considering the probability density, this factor needs to be combined with
the scaling of the volume element dy.

Exponential term Let |v| — |u| = Y0 (v — i) = MY (yi — x5).
Then

~ | —|p =~ MY (yi— 331)
T T,
alt:\ lul _ (1 _ t+1> ~ <1 _ t“) — exp <—7Tt+1 g

This matches the exponential dependence on 741 in (14.1).

\_/
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Ratio of Schur polynomials This is the most involved part. We need
the asymptotic behavior of s)(1 — m/M,...,1 —m,/M) as M — oo and
A~ M - z. Using the determinantal formula (14.5) for sx(bi,...,by), we
have

o b) det( ") det (1 — my/M)N )
S ye e 9Un = frd
o A(b) Il <swpan (bi — k)
o det ((1 — m/M)MZJ')
H1§i<kgn(77k/M —mi/M)
. det(e77®)
~ M—n(n—l)/ZA(ﬂ.) :

Therefore, the ratio scales as:

by, ba)  det(em™) /(M= DA()) _ det(e=™)
su(b,...,bp) - det(e=mxi) /(M—"(=D/2A(7)) ~ det(e ™%i)

Recalling the definition of the Harish-Chandra integral factor h(z):

det (e*m Zj):jzl (71)(721)
hz(z) = Cp A AG) where C), = 0l (n— 1)’
we see that
det (e~ ™) _ ha(y)A(y)
det(e=7%)  hg(z)A(z)

Combining the terms Putting everything together, the conditional prob-
ability mass function Prob(v|u) scales approximately as:

n

Tyl + 75 R hr(y)A
PrOb(V|:u) ~ ]—a:<y' H % -eXp (—7Tt+1 Z(yz - $1)) }W
Jj=1 ™

To get the probability density QZﬁl(:ﬁ, dy), we need to consider the measure
transformation. The discrete measure on partitions scales like M ™" times
the Lebesgue measure dy: Vol(v) = M ~"dy. The transition density p(z,y)
relates to the probability mass function P(v|u) via P(v|u) = p(z,y)- Vol(v).
Thus,

Pv|p)
Vol(v)

p(z,y) ~
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i 7 —a) P (y)AY)
~ 1| T D) m\Y)BY) o
1.~y 1;[ T4l + 7r] e REINE M
T he() DO s Suee ]
= . . Tt i —Ti) 1 . Mn n
jl;[1<7Tt+1 + 7rg) I (1) Ax) e o<y
= H(%t-kl +75) | - i (y) e~ (Tea1=1) Y o(yi—wi) (A(y)GZ(yiwi)

A(x)

Aly)
A(z)

= =) Sl . (

The last term in parentheses is exactly the standard kernel density Q(
from (14.2). Comparing this with (14.1) (with ¢ replaced by ¢t + 1), we see
perfect agreement. This confirms the scaling limit.

14.3.5 Conclusion
We have established the following result:

Theorem 14.9 (Correspondence Between Spiked Wishart and Exponential
LPP). Let {M(t)}+>0 be the spiked Wishart ensemble with parameters m =
(T1,...,m) and ™ = (71, 72,...), and let {\;i(t)}_, be its eigenvalues at
time t. Let {W;;}i;>1 be independent exponential random variables with
rates m; + 7, and let L(t, k) be the last-passage time from (1,1) to (t,k) in
this environment. Then, for all t > 1, the following joint distributions are
identical:

(L(1,n), L(2,n), ..., L(t,n)) = (M(1), Ai(2), ..., M(2)).

14.4 PushTASEP in the geometric LPP model

The joint distribution of the last-passage times (L(¢,1), L(t,2),..., L(t,n))
in the geometric LPP model corresponds directly to the particle positions
in the pushTASEP (pushing totally asymmetric simple exclusion process)
with geometric jumps.

To see this correspondence, we interpret L(t,i) — L(t,i — 1) (with the
convention L(¢,0) = 0) as the gap between consecutive particles in a one-
dimensional lattice. Under this mapping, we obtain the following result:

= Z(yiznlW)

e~ 2 (yi—mi) 1x<y> )

0 (z,dy)/dy
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Proposition 14.10. The evolution of the last-passage times (L(t, 1), L(t,2),.

in the geometric LPP model with parameters a; and b; corresponds precisely
to the dynamics of a pushTASEP where:

e Particles attempt to jump to the right according to geometric distribu-
tions with parameter ab;.

o When a particle jumps, it pushes all particles ahead of it that would
block its path.

Before jump

..Q..m...

— @ @00

After jump

Figure 14.1: Tllustration of a pushTASEP jump. The particle attempts to
jump by 2. It pushes two particles in a cascade of pushes.

This connection completes the circle of relationships between random
matrix theory, interacting particle systems, and last-passage percolation /
random growth, demonstrating the deep unity of integrable probability mod-
els.

14.5 Problems

14.5.1 Non-Markovianity

Show that the sequence of random variables defined in the exponential LPP
model,
L(1,n),L(2,n),...,L(t,n),

is not a Markov chain. By virtue of the equivalence with the spiked Wishart
ensemble (14.3), you may alternatively show that the sequence of maximal
eigenvalues

A(1),A1(2), ..., A (%)

of successive Wishart matrices M (1), M(2), ..., M(t) is not a Markov chain
either.

.., L(t,n))



CHAPTER 14. MATCHING RANDOM MATRICES TO RANDOM GROWTH 11215

14.5.2 Schur polynomials — equivalence of definitions

Show the equivalence of the two definitions of Schur polynomials (14.5) and
(14.6).

Hint: Substitute z,, = 1 and consider how both formulas expand as linear
combinations of Schur polynomials s, (21, ...,%,—1) in n—1 variables. This
induction (together with the fact that Schur polynomials are a linear basis
in the ring of symmetric polynomials in a given fixed number of variables)
will show that the two definitions are equivalent.

14.5.3 Schur polynomials — stability property
Show the stability property of Schur polynomials (14.7).

14.5.4 Cauchy identity for Schur polynomials

Let ai,...,a; and by,...,b, be positive parameters satisfying a;b; < 1 for
all pairs (7, j). Prove the Cauchy identity for Schur polynomials:

n

t
Z Su(alv-”7at)3u(b17-'wbn):HH1_1a,by
i=1j R

Wi > 2> 2 >0 Jj=1




Chapter 15

Random Matrices and
Topology

15.1 Introduction

In this wrap-up lecture, we go back to moments of random matrices, and
outline their connection to topology (more precisely, to counting certain
embedded graphs).

Remark 15.1. Throughout this lecture, to make an exact connection with
the existing literature, the matrix size is denoted by N, and the small n is
reserved to the order of the moment.

15.2 Gluing polygons into surfaces

15.2.1 Gluing edges of a polygon

Consider a regular 2n-gon with edges labeled by 1,...,2n. We can glue the
edges in pairs, so that the resulting surface is oriented.

Example 15.2. Consider a square. Recall that to obtain an orientable sur-
face one must orient the square’s boundary cyclically and then glue opposite
sides with opposite orientations. There are three ways to glue the edges of a
square. Note that in two cases, we get the sphere and in one case, the torus.
The two spheres are obtained by gluing the edges in the same way, but this
differs by a rotation — we consider these two cases as different.

The boundary of the 2n-gon becomes a graph embedded into the surface.
It has exactly n edges and one face. It may have different number of vertices,

216
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W N
1 I

Figure 15.1: The three ways to glue edges of a square to make an orientable
surface: two spheres (left and right) and one torus (center).

and thus the number of vertices uniquely determines the genus of the surface:

1—
V—E+F:2—2g:>g:7n+2 v (15.1)

In the case of the square (n = 2), we have V' = 3 and g = 0 for the sphere,
and V =1 and g = 1 for the torus.

Sl

Figure 15.2: Surfaces corresponding to gluings: left and right show three-
vertex trees (disk, sphere), center shows a one-vertex, one-face case (torus).

15.2.2 Starting to count
Proposition 15.3. There is a total
Cn—DN=2n-1)(2n—-3)---3-1
ways to glue the edges of a 2n-gon into a surface.
Proof. This is just the number of ways to pair 2n edges of the polygon. [

Proposition 15.4. The following are equivalent:
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1. The surface is a sphere;
2. The graph on the surface is a tree;

3. The identification of the opposite edges of the polygon is a noncrossing
pairing of the edges of the polygon.

Proof. See Problem 15.7.1. 0

There is Cat,, = n%rl (27?) ways to get the sphere.

15.2.3 Dual picture

In the dual picture, we can consider a star with 2n half-edges. Then, we get
a dual graph on the same surface. This graph has V* =1, E* = n, but can
have a variable number of faces (which corresponds to the genus):

F*=n—2g+1.
When n = 2, for the sphere, we have F* = 3, and for the torus, we have
F*=1.
15.2.4 Notation

Let us denote

£¢(n) = number of ways to glue the edges of a 2n-gon into a surface of genus g,

(15.2)
T,(N):= Y N =3 g (n)N"H"2, (15.3)
gluings o g=0

that is, this is the generating function of the gluings of the edges of a 2n-gon,
where N is the generating function variable.

Remark 15.5. The polynomial T},(/N) has only powers of N of the same
parity as n.

We have the first few polynomials (the case n = 2 corresponds to the
square):
Ti(N) = N?;
Ty(N) = 2N3 4+ N;
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T3(N) = 5N* 4+ 10N?;
Ty(N) = 14N° + 70N + 21N}
Ts(N) = 42N° + 420N* + 483 N2
15.3 Harer—Zagier formula (statement)

Introduce the exponential generating function for the sequence {T,,(N)}n>0:

Z N
T(NS)—1+2NS+2$ (1))”8n
n_
=1+2Ns+2N%s* + 3(2N3+N) 5(5N4+10N2)34+...

(15.4)

One of the goals of today’s lecture is to prove the following:

Theorem 15.6 (Harer—Zagier formula [HZ86]). For every N € Z~q one
has the closed form

T(N,s) = (ij)N (15.5)

Let us at least verify that the first few Taylor coefficients of (15.5) indeed
coincide with those in (15.4). Write

1 N
(Jj) — (1451 -5

:<1+N3+N(N_1)32+N(N DV 33+ )
2! 3!
N(N +1 N(N +1)(N +2)
x(1+Ns+ (2|+ )32+ ( +33( + s3+ )

Multiplying the two series and collecting terms up to s%, we find
2 .
1+2Ns+2N?s? + §(2N3 + N)s3 +
which matches the expansion (15.4) exactly.
Corollary 15.7. For all g > 0 and n > 0, the numbers £4(n) obey

(n+2)eg(n+1) = (An+2)ey(n) + (4n® —n)ey,_1(n — 1), (15.6)
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with the initial condition

Proof. Follows from the identity

<i:>N:(1+S><1+s+s2+..)(iDN1.

Corollary 15.8. The number e4(n) can be written as

) (2n)' 82g 8/72 n+1
o) = (n+1)!(n —2g)! [+7] <tanh(3/2)> ’

where [ng]f(s) denotes the coefficient of s%9 in the power-series expansion

of f(s).

One can define another family of coefficients:

29¢4(n
Cy(n) = C;t( )

Then, (15.6) can be rewritten as

n+1

Cytn+1) =Gyl + ("

>Cgl(n —1).
In particular, Cy(n) is a positive integer, which is not straightforward from
the definition of €4(n).

15.4 Gaussian integrals and Wick formula

15.4.1 The standard one—dimensional Gaussian measure

Denote by
1 2
du(z) = e 2 dz, z € R,

Vor

the standard centred Gaussian measure. We record the elementary facts that
will be used repeatedly:




CHAPTER 15. RANDOM MATRICES AND TOPOLOGY 221

(i) Normalization: /Rdu(x) =1.

(ii) Odd moments vanish: (z?"*!) = 0.

(iii) Even moments:

@) = o= [ e Tar = @)

") = — e 2dr = (2n —1)!! n € N.

27 /;oo ’
(iv) Characteristic (Fourier—Laplace) transform:
o(t) = /eim du(z) = e 2, teR.
R

Here and below we use the convenient bracket notation (f) := [ f(z) du(x)

for expectations.

Example 15.9. For k = 1 with variance 1 we have (z*) = 3 (z%)? = 3. For
degree 6 one finds (%) = 15. More generally, (z?") = (2n — 1)!!. This can
be computed by a simple induction.

15.4.2 Gaussian measures on R*

Fix a positive-definite symmetric matrix B € Sym; (R) and set C := B!
The centred Gaussian measure with covariance C' is

dup(z) = [(2%)*k/2(det B)1/2] exp(—%(Bm,m)) d*z, zeRE.(15.7)

-1
=: Zg
Orthogonal diagonalisation of B shows that the normalising prefactor indeed

gives ka dpug = 1.

Basic facts.
(;) =0, 1<i<k; (15.8)
<(Eil‘j> = Cij, 1 < i,j < k. (159)

All higher moments are expressed in terms of the matrix C' via Wick’s for-
mula in Section 15.4.3 below.

Remark 15.10. In this lecture, we consider only centered (mean zero)
Gaussian measures.
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15.4.3 Wick (Isserlis) formula

The essence of Wick’s formula is that every moment of a centred Gaussian
vector is a sum over pairwise contractions governed solely by the covariance
matrix.

Theorem 15.11 (Wick’s (or Isserlis’) formula). Let x = (x1,...,x) be
distributed according to (15.7). For an integern > 1 and indices iy, ..., io, €

{1,...,k},
<.%'Z-1 - $i2n> = Z H Ciaiba (15_10)
p€Pair(2n) {a,b}ep
where Pair(2n) is the set of all (2n — 1)!! perfect pairings of {1,...,2n}. If
the degree is odd, then the expectation vanishes.
More generally, for any linear functions (not necessarily distinct) f1,. .., fon
of the variables x1,...,xy, we have

(oo fan) =D I fa) Fonfan) - (Foutan)s (15.11)

where the sum is over all pairings of the indices 1,...,2n, and p1 < ps <
e <Py, 1 < @2 < ... < gy are the indices encoding the pairing.

Sketch of proof. When C' = diag(a%, e ,0,%), mixed covariances vanish and
Wick’s formula factorizes:
k
<m%n1xzn’“> = H(Qni—l)!! o, ni,...,ng € N.
i=1

Indeed, pairings are allowed only between indices of the same variable, and
then the number of pairings within one variable z; is (2n; — 1)!.

The general case of Wick’s formula follows from the diagonal case by
making a linear change of variables which diagonalizes the covariance matrix,
and using the linearity of (15.11). O

Example 15.12. The one-dimensional integral (z*) = \/% e e T da

can be computed using Wick’s formula:

(frlafsfa) = (frf2)(fafa) + (frfa)(fafa) + (frfa)(faf3)s

where f;(x) =z for i = 1,2,3,4. We know this integral is equal to 3.

Remark 15.13. Note that in the second part of Theorem 15.11, the linear
functions f; must be not affine, but truly linear, that is, f;(0,...,0) = 0.
See Problem 15.7.2.
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15.5 GUE integrals and gluing polygons

We will now apply Wick’s formula to compute the moments of traces of GUE
matrices. Recall that in Chapter 1 and Chapter 2 we worked with general
Wigner matrices (real symmetric or Hermitian), and now we will deal with
the special case of GUE, Gaussian Hermitian matrices. Here, the Gaussian
distribution will allow us to connect the moments of traces of GUE matrices
to the topology of surfaces.

15.5.1 Traces of powers, again

Let Hy be the space of N x N Hermitian matrices, and u on Hy be the
GUE measure, with complex variances 1 for the diagonal and off-diagonal
entries. Let us begin by an example with n = 2.

Consider the integral

/ tr(H*) du(H).
Hn

Here the integrand is a sum of monomials,

N
tr(H*) = Z hij hjk Pt g
ik, l=1
Since each entry h,, is a linear function of the real and imaginary parts of
H, we may apply Wick’s formula:

(hijhjkhiahe) = (hijhie) (Rrahis) + (hijhag) (hieha) + (hijha) (hykhig)-
(15.12)

Lemma 15.14. We have (h;jhj;) = 1, and all other second moments are
zero.

Proof. This is straightforward from the independence of real and imaginary
parts of the entries of H. O

Let us inspect each term in (15.12) separately:

e In the first product (hj;hji) is nonzero only when i = k, and then
equals 1. Likewise (hgh;;) = 1 only when k = i. Summing over all
i, 7, k, 1 with i = k gives N3.

e In the second product (hi;jhg) (hjihi) is nonzero only if i = j =k =1,
and then each factor equals 1. Hence this term contributes V.
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e The third product is identical in structure to the first and therefore
contributes another N3.

There is a one-to-one correspondence between these three terms in (15.12)

and the three pairings of the edges of a square (see Figure 15.1). Each pairing

contributes NV(?), where V (¢) is the number of vertices in the glued graph.
Putting everything together, we get

/ tr(HY) du(H) = 2N3+ N = Ty(N),
HN
where T5(N) is defined by (15.3).

In a similar manner, we obtain the following:

Proposition 15.15. For any n > 1, we have
/ tr(H*™) du(H) = T,(N).
Hn

Odd moments (expectations of tr(H?*"*1)) vanish.

Proof sketch. The idea why we get the genus will be evident from a larger
example. Let n = 4, so we are dealing with a sum of N® monomials of the
form

Riyig Pigin Mgy Pigis Pigig gy Piis Pigi -

Choose an arbitrary Wick pairing (there are 7!! = 105 of them). For in-
stance, pair

hiﬂ'z With hi4i5, hl'21'3 With hi51'6, hi3i4 With h‘ig’h? hi6i7 With hiﬂ'g.
In other words, consider the product
<hi1i2 hi4i5><hi2i3hi516><hi3i4hisil ><hi6i7hi7i8>' (15'13)

Each factor in (15.13) is usually 0; if any of them vanishes, so does the whole
product. For the product to be non—zero, every factor must equal 1, which
imposes the constraints

(hiyishisis) =1 <= i1 =5, i2 = iy (higighigis) = 1 <= iz =g, i3 = is;
(higighigiy) =1 < i3 =11, iq = is; (higizhizig) = 1 < ig = is, i7 = ir.
Altogether we obtain the chain of equalities

11 =15 = i3 = 11, o = 14 = 18 = ig = 12, i7 = 17,
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which leaves i1, o, i7 free and therefore yields N admissible index choices.
So, the contribution of the pairing (15.13) equals N3.

Now, consider an octagon (2n = 8), and glue its sides in pairs as illus-
trated in Figure 15.3. Since the edges are identified, we have also identifica-
tion of the vertices:

i1 =15, lg = g, iy = g, 13 = is, i3 =11, 14 =18, 6 = 18-
We thus see that the eight initial vertices collapse into
11 =15 =13, l2 =14 =16 =18, I7 =17,

producing V(o) = 3 vertices in the resulting map; hence the gluing o shown
in Figure 15.3 contributes NV(®) = N3, By (15.1), we get a torus. O

i1

i7 i3

i5

Figure 15.3: An 8-gon with pairwise—identified sides corresponding to the
Wick pairing considered in the proof of Proposition 15.15.

15.5.2 Computing traces of powers

We now invoke the powerful technique of dealing with integrals over GUE
through their spectrum. Recall that we have the following change of measure
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formula. For any function f on Hy which depends only on the eigenvalues
Al,..., Ay of H, we have

N

f(H) dp(H) :CN/RN FOu-oan) TT =22 T wlana),

Hy 1<i<j<N i=1

where pu(H) is the GUE distribution on H y, and p(dz) is the one-dimensional
Gaussian measure on R. The constant ¢y depends only on N (we computed
it in, e.g., Chapter 5 using determinantal structure of the GUE eigenvalues).

Lemma 15.16. The function

Tn(N)

t(N,n) = @n -1

s a polynomial in the variable n, of degree N — 1.
In particular, ¢(1,n) = 1.

Proof of Lemma 15.16. Consider f(H) = tr(H?"), 50 f(A1,...,An) = A"+
oot )\%‘. Because the integral over the GUE spectrum is symmetric in the
\i, we may replace the trace by NA".

Express the squared Vandermonde determinant as a polynomial in A\
and integrate in the remaining variables Az, ..., Ay. This reduces the mul-
tiple integral to a one—dimensional integral whose integrand is a polynomial
in A\; of degree 2n + 2N — 2. For fixed N the coefficients of this polynomial
are constants; its leading coefficient equals Ncy.

When we integrate each monomial A2"*2* and divide the result by (2n —
1)!!, we obtain

(2n + 2k — 1!

2n -1 7
which is a polynomial in n of degree k. Hence ¢(IN,n) is a polynomial in n
of degree N — 1, as desired. O

15.5.3 Proof of Harer—Zagier formula

Assume now that the vertices of the 2n-gon are colored in (at most) N
colors. A gluing is said to be compatible with the coloring if only vertices of
the same color may (but are not required to) be glued to one another.

Lemma 15.17. The number T,,(N) is precisely the number of gluings of a
2n-gon that are compatible with some coloring of its vertices in (at most) N
colors.
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Proof. After gluing, the boundary of the polygon becomes an embedded
graph with V' vertices. color each of those V vertices with one of the IV
colors. Any such coloring induces a coloring of the original polygon, and
the given gluing is compatible with it. There are exactly NV such colorings
of the graph (note that adjacent vertices are not required to have different
colors). O

Let T;,(N) denote the number of gluings of the 2n-gon that are compati-
ble with colorings in ezactly N colors. Choosing which L colors are actually
used and then coloring the vertices gives

N

T,(N) = > @) Tn(L).

L=1

Remark 15.18. This combinatorial technique is extremely standard, and
it is useful here.

Clearly, To(N) = Ti(N) = Ty_o(N) = 0, because the graph on the
surface has at most n + 1 vertices (and that is possible only when the graph
is a tree). Hence no coloring with more than n + 1 different colors can be
compatible with any gluing.

Define _

Tn(N)

t(N,n) = @n— 1)

The function #(NN,n) is a polynomial in n of degree N — 1 by Lemma 15.16.
We just found the roots of this polynomial: its N—1 rootsare 0,1,2,..., N—
2. Therefore, there exists a constant Ay such that

f(N,n):ANn(n—l)(n—2)...(n—N—|—2):AN(N—l)!(Nyi1>.

Substituting this into the expression for T),(NN), we obtain

N
n N
T,(N)=(2n—- 1)) Ay (L B 1) <L> (L =),
L=1
Now, consider 7,,(N) as a polynomial in N. Its leading coefficient (the

coefficient of N "*1) equals

(n+1)! 7

(2n — )N
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On the other hand, this coefficient is known to be the n-th Catalan number
(since the surface is a sphere, and we are enumerating trees):

An+1 | _ (271)'
T =

(2n —1)N

Hence A,,+1 = 2" /n!, and therefore, we have found

T,(N) = (2n — 1)!!?3212“ (Lﬁ 1) (JD (L— 1),

Because ( Lfl) = 0 when n < L — 1, the number of non—zero summands is
min{N,n + 1}.

As the last step in the proof of Theorem 15.6, we note that the last
formula is exactly the series expansion of

1+s\V
1—s
in powers of s. Indeed,

00 N [e%)
T,,(N) (N n
1+2Ns+2 e =1 2 ntl
FelNst Snz_:l@n—n!!s +LZ_1 L) 2 loo1)s

n=L—1

-2 () (=) - ()

This completes the proof of Theorem 15.6.

15.6 Going further: Multi-matrix models

15.6.1 Maps with several faces and Feynman diagrams

Fix a composition k = (kq,. .., kp) with k1 +---+ky = n. For a GUE matrix
H let
Mi(N) = <tr(H2k1) tr(H2*2) .. -tr(H2ke)>.

Write each trace as a 2k;-valent star: a cyclicly ordered vertex with 2k;
labelled half-edges. Wick’s formula pairs the 2n half-edges in every possi-
ble way; a pairing o produces an oriented ribbon graph G(o) (dual to the
collection of stars), with
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e [' =/ faces (the original traces),
e £/ =n edges (Wick pairings),
e a vertex count V(o).

On the other hand, we may count the star picture, then V(o) becomes
F*(0), the number of faces in the star picture.
Each pairing contributes NV, so

ZNV ZNF*( o).

[ea

The sum (the matrix integral) enumerates maps by genus. One can also
write the matrix integral (tr(H)™ tr(H?)®2...) as a sum over all possible
embedded graphs (into surfaces of various genera), with «; vertices of degree
1, ag vertices of degree 2, etc. The sum needs to be normalized by the
number of automorphisms of the graph, more precisely, the matrix integral

is equal to
NF(F

2191292 ok
2 A

Example 15.19. There are two embedded graphs with one vertex and two
cycles. For the sphere, the automorphisms of the graph are 2 (the two cycles
can be interchanged), and for the torus, the automorphisms are 1 (the two
cycles cannot be interchanged). The contribution of the sphere is 2N?2, and
the contribution of the torus is N2. We have ap = 1 (and all other a; are
zero), so ¢q = 4, and we get

N® N
4 —+=)=2N3+N
(Fe7) -0y

which is the moment (tr (H*)), as it should be.

Remark 15.20. Even the case N = 1 is of interest:

1 1 o (—1+ 25 day)!!
e ZZOLZ e
Z | Aut (@ )

orl. . ooy) 10202 | ko orl.ooy! 1202 ko

15.6.2 Two—matrix model and the Ising interaction

Take two independent GUE matrices H,G € Hy and fix a real coupling ¢
with |¢|] < 1. Consider the weighted Gaussian measure with density pro-
portional to exp{2ctr(HG)}. In other words, the Gaussian measure on
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Hy X Hy has two correlated matrices H and G, with

1 1 c
(hihii) = 7=+ (9ugn) =72 (higi) = 75
and all other covariances vanish.
Now, we may consider matrix integrals over the correlated measure, for
example,

/ e_ttr(H4+G4)d,u,<H)d,u,(G).

This integral is a generating function of four-valent maps (with an arbitrary
number of vertices), but this time assign one of two “states” to each vertex
of the map. We label these states H and G; this labeling simply means that
the vertex represents either tr H* or tr G*, respectively. Now, if two vertices
are connected by an edge and they are in the same state, the contribution
of the edge to the sum (i.e., in the ”perturbation theory series”) is equal to
1/(1 —c?), and if the vertices are in different states, the contribution of this
edge is equal to ¢/(1 — ¢?). The summation is carried out over all maps and
all possible combinations of vertex states.

The model we obtained is very reminiscent of the classical Ising model
in statistical physics, only in this case the model is considered not on a
regular lattice, but on the set of maps (and the summation is carried out
not only over the states of the system, but also over all maps). Physicists
call this model the “Ising model on a dynamical lattice” [IZ80]. This model
shares many common phenomena with the regular Ising model, such as the
presence of phase transitions.

Remark 15.21. Many other enumerative problems in geometry and topol-
ogy can be formulated in terms of Gaussian matrix integrals (with “multi-
matrix models”, that is, involving several GUE matrices). Examples include
Gauss’ problem of counting the number of curves on a surface (R? or the
sphere) up to isotopy; and the problem of counting meanders (curves which
intersect a given line at n points, up to isotopy of the plane leaving the line
invariant).

15.7 Problems

15.7.1 Gluing a Sphere

Show that for a connected, orientable surface formed by gluing the edges of
a 2n-gon in pairs, the following are equivalent:
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1. The resulting surface is a sphere.
2. The embedded graph formed by the identification is a tree.

3. The pairing of edges corresponds to a noncrossing pairing (i.e., when
the edges are arranged around the polygon in order, the identifications
can be drawn inside the disk without crossings).

(This is the proof of Proposition 15.4.)

15.7.2 Wick’s formula for affine functions

Consider the integrals of the form

k
oo 1 2
I(ay,...,a) ::/ H(:U—ai) ——e " 2
—00 =1 V2m

where aq,...,a; € R are fixed parameters.
Compute I (a1, ag) and I (a1, az, as, aq) explicitly as polynomials in ay, . . ., aq,
and compare I (a1, as,as,as) with the Wick-like expansion.

15.7.3 GOE and non-orientable surfaces

Let S € Symy (R) be drawn from the Gaussian Orthogonal Ensemble (GOE),
so that the entries are centred Gaussians with covariances

(sijsk) = ik 0j1 + i djg, 1<i,j,k,l <N.

Because of the second term, Wick’s pairings now allow reversals of indices,
and the polygon-gluing picture changes accordingly.

(a) Show that each Wick contraction contributing to the moment / tr(S%") du(S)
Sym p (R
corresponds to a pairing of the 2n edges of a 2n-gon in W}}{icﬁ(h)alf
of the identifications are orientation-preserving and the other half are
orientation-reversing. Conclude that the resulting surface is, in gen-
eral, non-orientable. (A convenient measure of non-orientability is
the cross-cap number v, so that the Euler characteristic is x =2 —~.)

(b) Let €y(n) be the number of pairings producing a surface with 7 cross-
caps. Prove that

il / tr(S2") du(S) =y NV,
Symy (R) ;



CHAPTER 15. RANDOM MATRICES AND TOPOLOGY 232

(c) Compute £, (n) explicitly for n = 1,2,3 and identify the corresponding
additional non-orientable surfaces (real projective plane, Klein bottle,

).

(d) Derive a recurrence relation for the numbers £,(n) analogous to the
Harer—Zagier recurrence. (Hint: keep track of how many of the 2n
edges are glued with or without a twist.)
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