Mini Course: Dimers and Embeddings
 Marianna Russkikh

1 Exercise Session One

1. Proof of Kasteleyn's theorem

Let G be a weighted planar bipartite graph, with an edge weight function $v: E(G) \rightarrow \mathbb{R}_{>0}$.
(a) Show that there exists a choice of real Kasteleyn signs for G : There exists signs τ_{e} for each edge e such that

$$
\tau_{e}= \pm 1 \quad \text { and } \quad \frac{\tau_{e_{1}}}{\tau_{e_{2}}} \cdot \ldots \cdot \frac{\tau_{e_{2 k-1}}}{\tau_{e_{2 k}}}=(-1)^{k+1}
$$

around each face of degree $2 k$ with boundary edges $e_{1}, e_{2}, \ldots, e_{2 k}$ in the counterclockwise order.
(b) Let τ_{e} be Kasteleyn signs on edges. Show that for any simple loop $e_{1}, e_{2}, \ldots, e_{2 k}$ with l points inside the loop the following holds

$$
\frac{\tau_{e_{1}}}{\tau_{e_{2}}} \ldots \cdot \frac{\tau_{e_{2 k-1}}}{\tau_{e_{2 k}}}=(-1)^{k+l-1} .
$$

(c) Assume we have a choice of Kasteleyn signs (not necessary real), and consider the Kasteleyn matrix, the matrix whose rows are indexed by black vertices and columns by white vertices, and defined by

$$
K(w, b)=\left\{\begin{array}{ll}
\tau_{e} v(e) & \text { if }(w b)=e \text { is an edge of } \mathrm{G} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Prove that

$$
|\operatorname{det} K|=Z,
$$

where Z is the dimer model partition function. I.e. $Z=\sum_{\text {matchings } M}\left(\prod_{e \in M} v(e)\right)$.
2. Local statistics. Let K be a Kasteleyn matrix of a weighted, planar, bipartite graph (G, v) carrying a dimer model. Show that for any finite set of edges $e_{1}=\left(w_{1} b_{1}\right), \ldots, e_{k}=\left(w_{k} b_{k}\right)$, the probability of seeing these edges in a random perfect matching M is given by the corresponding minor of the inverse Kasteleyn:

$$
\mathbb{P}\left(e_{1}, \ldots, e_{k} \in M\right)=\prod_{i=1}^{k} K\left(w_{i}, b_{i}\right) \operatorname{det}\left(K^{-1}\left(b_{i}, w_{j}\right)\right)_{i, j=1}^{k} .
$$

Hint: Use that

$$
\frac{\left|\operatorname{det} K_{\left(W \backslash\left\{w_{j}\right\}_{j=1}^{k}\right) \times\left(B \backslash\left\{b_{j}\right\}_{j=1}^{k}\right)}\right|}{|\operatorname{det} K|}=\left|\operatorname{det}\left(K^{-1}\left(b_{i}, w_{j}\right)\right)_{i, j=1}^{k}\right| .
$$

3. Number of tilings of a rectangle. Prove that the number of domino tilings of an $M \times N$ rectangle is given by the product

$$
\left(\prod_{p=1}^{M} \prod_{q=1}^{N} 4\left(\cos ^{2}\left(\frac{\pi p}{M+1}\right)+\cos ^{2}\left(\frac{\pi q}{N+1}\right)\right)\right)^{\frac{1}{4}}
$$

Hint: Diagonalize the operator

$$
A=\left(\begin{array}{cc}
0 & K \\
K^{T} & 0
\end{array}\right)
$$

defined in the lectures and apply Kasteleyn's theorem.
4. Proof of Thurston's Theorem Recall that Thurston's theorem states:

Theorem (Thurston). A simply-connected domain Ω on the square lattice is tileable iff both conditions hold:

1) The height function $\left.h\right|_{\partial \Omega}$ on the boundary vertices is well defined (i.e. the increments around the boundary add up to zero).
2) For all vertices $u, v \in \partial \Omega$

$$
h(v)-h(u) \leq d(u, v),
$$

where $d(u, v)$ is an edge length of the shortest positive oriented path from u to v within $\bar{\Omega}=\Omega \cup \partial \Omega$ on $\overrightarrow{\mathbb{Z}}^{2}$. Recall that $\overrightarrow{\mathbb{Z}}^{2}$ is a directed graph on the square lattice with checkerboard colored faces such that around each black face the edges oriented clockwise.

In this exercise we will prove Thurston's theorem.
(a) Proof of \Longrightarrow : Show that for a simply-connected tileable domain on the square lattice the corresponding height function satisfy 1) and 2).
(b) Each positively oriented loop in $\bar{\Omega}$ (i.e. moving along directed edges on $\overrightarrow{\mathbb{Z}}^{2}$) has length divisible by 4 .
(c) Assume h is a function defined on boundary vertices and satisfying 1) and 2). Let us define the "maximal height function" \tilde{h} as follows:

$$
\tilde{h}(v)=\min _{v^{\prime} \in \partial \Omega}\left(h\left(v^{\prime}\right)+d\left(v^{\prime}, v\right)\right) .
$$

Prove the following lemmas:
Lemma 1.1. Along each oriented edge $\overrightarrow{u v}$, the following holds

$$
\left\{\begin{array}{l}
\tilde{h}(v) \geq \tilde{h}(u)-3 \\
\tilde{h}(v) \leq \tilde{h}(u)+1
\end{array} .\right.
$$

Lemma 1.2. For each oriented edge $\overrightarrow{u v}$, one has

$$
\tilde{h}(v)-\tilde{h}(u)=1 \quad \bmod 4 .
$$

Hint: To prove the second lemma use part (b).
(d) Proof of \Longleftarrow : Show that Lemmas 1.1 and 1.2 imply that \tilde{h} satisfies local rules, i.e. corresponds to a tiling.

