
Mini Course: Dimers and Embeddings
Marianna Russkikh TA: Matthew Nicoletti

1 Exercise Session One

1. Proof of Kasteleyn’s theorem
Let G be a weighted planar bipartite graph, with an edge weight function ν : E(G)→ R>0.

(a) Show that there exists a choice of real Kasteleyn signs for G: There exists signs τe for each edge e
such that

τe =±1 and
τe1

τe2

· . . . ·
τe2k−1

τe2k

= (−1)k+1

around each face of degree 2k with boundary edges e1,e2, . . . ,e2k in the counterclockwise order.

(b) Let τe be Kasteleyn signs on edges. Show that for any simple loop e1,e2, . . . ,e2k with l points inside
the loop the following holds

τe1

τe2

· . . . ·
τe2k−1

τe2k

= (−1)k+l−1.

(c) Assume we have a choice of Kasteleyn signs (not necessary real), and consider the Kasteleyn matrix,
the matrix whose rows are indexed by black vertices and columns by white vertices, and defined by

K(w,b) =

{
τeν(e) if (wb) = e is an edge of G
0 otherwise

.

Prove that
|detK|= Z,

where Z is the dimer model partition function. I.e. Z = ∑
matchings M

(
∏

e∈M
ν(e)

)
.

2. Local statistics. Let K be a Kasteleyn matrix of a weighted, planar, bipartite graph (G,ν) carrying a
dimer model. Show that for any finite set of edges e1 = (w1b1), . . . ,ek = (wkbk), the probability of seeing
these edges in a random perfect matching M is given by the corresponding minor of the inverse Kasteleyn:

P(e1, . . . ,ek ∈M) =
k

∏
i=1

K(wi,bi)det
(
K−1(bi,w j)

)k
i, j=1.

Hint: Use that
|detK(Wr{w j}k

j=1)×(Br{b j}k
j=1)
|

|detK|
= |det

(
K−1(bi,w j)

)k
i, j=1|.
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3. Number of tilings of a rectangle. Prove that the number of domino tilings of an M×N rectangle is given
by the product (

M

∏
p=1

N

∏
q=1

4
(

cos2(
π p

M+1
)+ cos2(

πq
N +1

)

)) 1
4

.

Hint: Diagonalize the operator

A =

(
0 K

KT 0

)
defined in the lectures and apply Kasteleyn’s theorem.

4. Proof of Thurston’s Theorem Recall that Thurston’s theorem states:

Theorem (Thurston). A simply-connected domain Ω on the square lattice is tileable iff both conditions
hold:

1) The height function h|∂Ω on the boundary vertices is well defined (i.e. the increments around the
boundary add up to zero).

2) For all vertices u,v ∈ ∂Ω

h(v)−h(u)≤ d(u,v),

where d(u,v) is an edge length of the shortest positive oriented path from u to v within Ω = Ω∪ ∂Ω

on ~Z2. Recall that ~Z2 is a directed graph on the square lattice with checkerboard colored faces such
that around each black face the edges oriented clockwise.

In this exercise we will prove Thurston’s theorem.

(a) Proof of =⇒ : Show that for a simply-connected tileable domain on the square lattice the correspond-
ing height function satisfy 1) and 2).

(b) Each positively oriented loop in Ω (i.e. moving along directed edges on ~Z2) has length divisible by 4.

(c) Assume h is a function defined on boundary vertices and satisfying 1) and 2). Let us define the
“maximal height function” h̃ as follows:

h̃(v) = min
v′∈∂Ω

(h(v′)+d(v′,v)).

Prove the following lemmas:

Lemma 1.1. Along each oriented edge −→uv, the following holds{
h̃(v)≥ h̃(u)−3
h̃(v)≤ h̃(u)+1

.

Lemma 1.2. For each oriented edge −→uv, one has

h̃(v)− h̃(u) = 1 mod 4.

Hint: To prove the second lemma use part (b).

(d) Proof of ⇐= : Show that Lemmas 1.1 and 1.2 imply that h̃ satisfies local rules, i.e. corresponds to a
tiling.
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