## Mini Course: Dimers and Embeddings

Marianna Russkikh TA: Matthew Nicoletti

## Exercise Session $\mathrm{T}_{\text {wo: }}$ Discrete harmonic and holomorphic functions

Below $\Omega \subset \mathbb{C}$ denotes an open simply connected subset.

## Reminder:

- A function $u$ is harmonic on $\Omega$ iff $\Delta u(z)=u_{x x}+u_{y y}=0$ for any $z \in \Omega$.
- A form $\omega=P d x+Q d y$ is called closed if for any loop $\gamma$ we have $\int_{\gamma} \omega=0$. In this case, we can define a primitive $F$ of $\omega$ (i.e., a function $F$ such that $d F=\omega$ ) by letting $F(z)=\int_{z_{0}}^{z} \omega$, where $z_{0} \in \Omega$ is some fixed point and $\int_{z_{0}}^{z}$ denotes the integral along any path in $\Omega$ connecting $z_{0}$ and $z$.


## 1. Harmonic conjugate

(a) Let $u: \Omega \rightarrow \mathbb{R}$ be a harmonic function. Show that $d^{*} u:=u_{x} d y-u_{y} d x$ is a closed form.
[Use Green's theorem: for any $P, Q \in C^{1}(\Omega)$ one has $\int_{\partial \Omega} P d x+Q d y=\iint_{\Omega}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$.]
(b) In the setup of (1a), define $v$ to be the primitive of $d^{*} u$. Observe that $\nabla v$ is equal to $\nabla u$ rotated by $\pi / 2$ counterclockwise everywhere.
(c) Show that $f:=u+i v$ is a holomorphic function.
(d) Check that for any function $f: \Omega \rightarrow \mathbb{C}$ one has $4 \partial \bar{\partial} f=4 \bar{\partial} \partial f=\Delta f$.

## 2. Discrete harmonic conjugate

A function $u: \mathbb{Z}^{2} \rightarrow \mathbb{R}$ is called discrete harmonic at $b \in \mathbb{Z}^{2}$ if

$$
\Delta_{\text {discr }} u(b)=\frac{u(b+1)+u(b+i)+u(b-1)+u(b-i)-4 u(b)}{4}=0 .
$$

(a) Check that if $u \in C^{2}(\mathbb{C})$, then for any $b \in \mathbb{C}$

$$
\frac{u(b+\varepsilon)+u(b+i \varepsilon)+u(b-\varepsilon)+u(b-i \varepsilon)-4 u(b)}{4}=\frac{\varepsilon^{2}}{4} \Delta u+o\left(\varepsilon^{2}\right),
$$

i.e., $\Delta_{\text {discr }}$ approximates $\Delta$ in a certain sense.
(b) Given an oriented edge $\left(b_{1} b_{2}\right)$ of $\mathbb{Z}^{2}$, denote by $\left(b_{1}^{*} b_{2}^{*}\right)$ the oriented edge of $\left(\mathbb{Z}+\frac{1}{2}\right) \times\left(\mathbb{Z}+\frac{1}{2}\right)$ which has the first vertex (here $b_{1}$ ) to its right. Define a 1 -form on oriented edges of $\left(\mathbb{Z}+\frac{1}{2}\right) \times\left(\mathbb{Z}+\frac{1}{2}\right)$ by

$$
\omega\left(b_{1}^{*} b_{2}^{*}\right):=u\left(b_{2}\right)-u\left(b_{1}\right) .
$$

Show that $\omega$ is a closed form (sums to zero around any loop in the dual graph) if $u$ is discrete harmonic.
(c) Define a function $v:\left(\mathbb{Z}+\frac{1}{2}\right) \times\left(\mathbb{Z}+\frac{1}{2}\right) \rightarrow \mathbb{R}$ to be the primitive of $\omega$, which means that the equality

$$
v\left(b_{1}^{*}\right)-v\left(b_{2}^{*}\right)=\omega\left(b_{1}^{*} b_{2}^{*}\right)
$$

holds for any adjacent vertices $b_{1}^{*}$ and $b_{2}^{*}$ of $\left(\mathbb{Z}+\frac{1}{2}\right) \times\left(\mathbb{Z}+\frac{1}{2}\right)$. Show that $v$ is discrete harmonic.
(d) Let $u$ and $v$ be defined as above. Let $B:=\mathbb{Z}^{2} \cup\left(\mathbb{Z}+\frac{1}{2}\right) \times\left(\mathbb{Z}+\frac{1}{2}\right)$ and define a function $f: B \rightarrow \mathbb{R} \cup i \mathbb{R}$ by

$$
f(b)= \begin{cases}u(b) & \text { if } b \in \mathbb{Z}^{2} \\ i v(b) & \text { if } b \in\left(\mathbb{Z}+\frac{1}{2}\right) \times\left(\mathbb{Z}+\frac{1}{2}\right) .\end{cases}
$$

Let us define discrete operators $\partial_{\text {discr }}$ and $\bar{\partial}_{\text {discr }}$ by the formulas:

$$
\begin{aligned}
& {\left[\partial_{\mathrm{discr}} f\right](w)=\frac{1}{2}\left(\frac{f\left(w+\frac{1}{2}\right)-f\left(w-\frac{1}{2}\right)}{2}+\frac{f\left(w+\frac{i}{2}\right)-f\left(w-\frac{i}{2}\right)}{2 i}\right),} \\
& {\left[\bar{\partial}_{\text {discr }} f\right](w)=\frac{1}{2}\left(\frac{f\left(w+\frac{1}{2}\right)-f\left(w-\frac{1}{2}\right)}{2 i}+\frac{f\left(w+\frac{i}{2}\right)-f\left(w-\frac{i}{2}\right)}{2}\right),}
\end{aligned}
$$

Show that $\left[\bar{\partial}_{\text {discr}} f\right](w)=0$ for all $w \in W:=\left(\mathbb{Z} \times\left(\mathbb{Z}+\frac{1}{2}\right)\right) \cup\left(\left(\mathbb{Z}+\frac{1}{2}\right) \times \mathbb{Z}\right)$.
(e) Suppose that $f \in C^{1}(\mathbb{C})$. Show that

$$
\frac{1}{2}\left(\frac{f\left(w+\frac{\varepsilon}{2}\right)-f\left(w-\frac{\varepsilon}{2}\right)}{2 i}+\frac{f\left(w+i \frac{\varepsilon}{2}\right)-f\left(w-i \frac{\varepsilon}{2}\right)}{2}\right)=-i \frac{\varepsilon}{2} \bar{\partial} f+o(\varepsilon),
$$

i.e., $\bar{\partial}_{\text {discr }}$ approximates $\bar{\partial}$.

Definition: we call a pair $f:=(u, i v)$ a holomorphic function and associate $u$ with the real part of $f$ and $v$ with its imaginary part.
(f) Show that $4\left[\partial_{\text {discr }} \bar{\partial}_{\text {discr }} f\right](b)=4\left[\bar{\partial}_{\text {discr }} \partial_{\text {discr }} f\right](b)=\Delta_{\text {discr }} f(b)$.

