UVA Summer School PS2

July 9th 2024

1. Exercise 6.1 Starting the PNG from the narrow wedge initial condition \mathfrak{d}_{0}, i.e.

$$
h(0, x)=\left\{\begin{array}{l}
0, x=0 \tag{1}\\
-\infty, x \neq 0
\end{array}\right.
$$

we will show that the one-point marginal $h(t, 0)$ is equivalent to a Poissonized version of the longest increasing subsequence problem ${ }^{1}$.

The longest increasing subsequence problem is as follows: consider the problem of finding Lipschitz-1 paths going from $(0,0)$ to $(t, 0)$ which pick up a maximal number of space-time Poisson points along the way. All these paths lie inside the square R with vertices $(0,0),(t / 2, t / 2),(t / 2,-t / 2)$ and $(t, 0)$, and

- Show that the maximal number of points which they can pick up is exactly $h(t, 0)$.

Now rotate the picture by -45°, let N denote the number of Poisson points inside the square corresponding to R (so that N is a Poisson $[t]$ random variable), and order these N points according to their x coordinate. The y coordinates of these points define a random permutation σ of $\{1, \ldots, N\}$, which is clearly chosen uniformly from S_{N}.

- Show that $h(t, 0)$ is nothing but the length of the longest increasing subsequence in σ.

2. Exercise 6.8 Recall some notions from the lecture. $E_{a, u}$ is expectation of the height function, which jumps down for η particles and up for ζ particles, i.e. $h_{x}-h_{x-1}=\zeta_{x}-\eta_{x}$ with $h_{a}=u$ with respect to the product measure from Exercise 4.14 (problem 2 from Monday) on the interval $\{a, a+1, \ldots, b\}$. Note that we are dealing with the conditional measure that $h(b)=v$, multiplied by the probability that $h(b)=v$, so we can write it as $E_{a, u}\left[\left(L^{*} F\right) \mathbf{1}_{h_{b}=v}\right]$, where $L^{*}=L_{\mathrm{rw}}^{*}+L_{\mathrm{cr}}^{*} . F(g)$ is the indicator function that $g-h$ is ever less than or equal to 0 .

- Show that $E_{a, u}\left[\left(L_{\mathrm{cr}}^{*} F\right) \mathbf{1}_{h_{b}=v}\right]=0$.

3. Exercise 4.6 Let Δ be the discrete Laplace operator on \mathbb{Z}, i.e. $\Delta f(x)=f(x+1)-2 f(x)+f(x-1), x \in$ \mathbb{Z}.

- Show that

$$
\begin{equation*}
e^{x \Delta}\left(u_{1}, u_{2}\right)=e^{-2 x} I_{\left|u_{2}-u_{1}\right|}(2 x), \tag{2}
\end{equation*}
$$

where $I_{n}(2 x):=\frac{1}{2 \pi i} \oint_{\gamma_{0}} d z e^{x\left(z+z^{-1}\right)} / z^{n+1}$ is the modified Bessel function of the first kind. Here γ_{0} is any simple positively oriented contour around $0 \in \mathbb{C}$.

[^0]4. Exercise 6.17 [Narrow wedge initial data] We are going to work out the distribution for the PNG starting from narrow wedge initial data, which is:
\[

$$
\begin{equation*}
F_{\tau}(s)=\mathbb{P}\left(h\left(t, x ; \mathfrak{d}_{0}\right) \leq r\right)=\operatorname{det}\left(I-K^{\mathfrak{d}_{0}}(t, x, r)\right)_{l\left(\mathbb{Z}_{>0}\right)} . \tag{3}
\end{equation*}
$$

\]

The kernel $K^{\mathfrak{D}_{0}}$ is defined as follows:

$$
\begin{equation*}
K^{\mathfrak{D}_{0}}=e^{-2 t \nabla-x \Delta} T_{x-t, x+t}^{\mathfrak{d}_{0}} e^{2 t \nabla+x \Delta} \tag{4}
\end{equation*}
$$

where $T_{a, b}^{\mathfrak{d}_{0}}=e^{a \Delta} P_{a, b}^{h i t\left(\mathfrak{d}_{0}\right)} e^{-b \Delta}$. Recall $P_{a, b}^{h i t\left(\mathfrak{D}_{0}\right)}$ is defined as

$$
\begin{equation*}
P_{a, b}^{\mathrm{hit}(h)}(u, v)=P(g \text { hits the hypograph of } h \text { on }[a, b] \text { and } g(b)=v \mid g(a)=u) . \tag{5}
\end{equation*}
$$

Here g is a random walk which is the difference of two Poisson process with rate 1.
Since the random walk g can only hit the hypograph of \mathfrak{d}_{0} at the origin,

- Show that

$$
\begin{equation*}
e^{(x-t) \Delta} P_{x-t, x+t}^{\mathrm{hit}\left(\mathfrak{d}_{0}\right)} e^{(-t-x) \Delta}=\overline{\chi_{0}} \tag{6}
\end{equation*}
$$

where $\bar{\chi}_{0}(u)=1_{u \leq 0}$.

- Following the previous exercise, show that

$$
\begin{equation*}
e^{2 t \nabla+x \Delta}\left(u_{1}, u_{2}\right)=e^{-2 x} \frac{1}{2 \pi i} \oint_{\gamma_{0}} \frac{d z}{z^{u_{2}-u_{1}+1}} e^{t\left(z-z^{-1}\right)+x\left(z+z^{-1}\right)} \tag{7}
\end{equation*}
$$

where γ_{0} is any simple, positively oriented contour around the origin.
When $t>|x|$ this kernel can be expressed in terms of the Bessel function of the first kind, $J_{n}(x)=$ $\frac{1}{2 \pi i} \oint_{\gamma_{0}} d z e^{x\left(z-z^{-1}\right) / 2} / z^{n+1}$, we have:

$$
\begin{equation*}
e^{2 t \nabla+x \Delta}\left(u_{1}, u_{2}\right)=e^{-2 x}\left(\frac{t-x}{t+x}\right)^{\left(u_{2}-u_{1}\right) / 2} J_{u_{2}-u_{1}}\left(2 \sqrt{t^{2}-x^{2}}\right) \tag{8}
\end{equation*}
$$

- Use this to show that

$$
K(u, v)=\left(\frac{t+x}{t-x}\right)^{(u-v) / 2} B_{s}(u, v), \quad B_{s}(u, v)=\sum_{\ell \leq 0} J_{u-\ell}(2 s) J_{v-\ell}(2 s)
$$

with $s=\sqrt{t^{2}-x^{2}}$.
B_{s} is called the discrete Bessel kernel.

- Show that it is an integrable kernel:

$$
B_{s}(u, v)=\frac{s}{u-v}\left(J_{u-1}(2 s) J_{v}(2 s)-J_{u}(2 s) J_{v-1}(2 s)\right) .
$$

In order to show this, you need the following recurrence relation on J_{n} :

$$
\frac{n}{t} J_{n}(2 t)=J_{n+1}(2 t)+J_{n-1}(2 t)
$$

- Show that a conjugation of kernel reduces the distribution to be:

$$
\begin{equation*}
F_{r}(s)=\operatorname{det}\left(I-\tau_{r} B_{s} \tau_{-r}\right)_{\ell^{2}\left(\mathbb{Z}_{>0}\right)} \tag{9}
\end{equation*}
$$

where $\tau_{r} f(u)=f(u+r)$.
Note that from [Borodin-Okounkov 2000],

$$
\begin{equation*}
\operatorname{det}\left(I-\tau_{r} B_{s} \tau_{-r}\right)_{\ell^{2}\left(\mathbb{Z}_{>0}\right)}=e^{-s^{2}} \operatorname{det}\left(I_{i-j}(2 s)\right)_{i, j=0, \ldots, r-1} \tag{10}
\end{equation*}
$$

where the I_{n} are modified Bessel functions of the first kind. This latter is Gessel's formula.

[^0]: ${ }^{1}$ This was the first exact fluctuation found in the KPZ class, by Baik, Deift in Johansson in 1999. They took a limit of a determinantal formula for the distribution which derived by Gessel about 10 years earlier (it took the decade to realize that it was a formula for this model) and obtained in the limit the same GUE Tracy-Widom distribution which had also been discovered, again about 10 years earlier, for the asymptotic distribution of the top eigenvalue of a matrix from the Gaussian Unitary Ensemble.

