UVA Summer School PS3

July 11th 2024

Exercise 7.1[Flat initial data] Let $\mathfrak{h}_{0}=0$ be the initial condition for the KPZ fixed point. Recall the Brownian scattering transform is defined to be:

$$
\lim _{L \rightarrow \infty} e^{-t \partial^{3} / 3-L \partial^{2}} P_{-L, L}^{\operatorname{hit}(h)} e^{t \partial^{3} / 3-L \partial^{2}}
$$

for some $t>0$ where $P_{-L, L}^{\operatorname{hit}(h)}(u, v) d v$ is the probability a Brownian motion starting at u at time $-L$ is in $[v, v+d v]$ at time L and hits h along the way.

- Use the reflection principle to show that as $t \searrow 0$ this is the reflection operator.
- Use the formula from exercise (5.8) to compute the finite dimensional distributions of the Airy ${ }_{1}$ process in x ($=$ the KPZ fixed point at time 1 starting from flat, $h\left(1, x ; h_{0}=0\right)$)

Exercise 5.8 [ScAiry (Scaled Airy) formula] Recall Airy function $\operatorname{Ai}(x)$ is defined as

$$
\operatorname{Ai}(z)=\frac{1}{2 \pi i} \int_{\Gamma} d w e^{\frac{w^{3}}{3}-z w}
$$

where the contour Γ starts at the point at infinity with argument $-\pi / 3$, connects to 0 , and ends at the point at infinity with argument $\pi / 3$.

- Use the contour integral formula for the Airy function to prove that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \operatorname{Ai}(a+x) \operatorname{Ai}(b-x)=2^{-1 / 3} \operatorname{Ai}\left(2^{-1 / 3}(a+b)\right) \tag{1}
\end{equation*}
$$

Exercise 7.3 Let $\mathfrak{h}\left(t, x ; \mathfrak{h}_{0}\right)$ denote the KPZ fixed point with initial data \mathfrak{h}_{0}. The KPZ fixed point is the height function valued Markov process taking with transition probabilities given by:

$$
\begin{equation*}
P_{\mathfrak{h}_{0}}\left(\mathfrak{h}\left(t, x_{1}\right) \leq r_{1}, \ldots, \mathfrak{h}\left(t, x_{n}\right) \leq r_{n}\right)=\operatorname{det}\left(I-\mathfrak{K}^{\operatorname{ext}}\left(t, \vec{x}, \vec{r}, \mathfrak{h}_{0}\right)\right)_{L^{2}\left(\mathbb{R}_{+}\right)^{n}} \tag{2}
\end{equation*}
$$

The kernel is

$$
\begin{equation*}
\mathfrak{K}_{i j}^{\text {ext }}(t, \vec{x}, \vec{r}, \mathfrak{h})=-e^{\left(x_{j}-x_{i}\right) \partial^{2}+\left(r_{i}-r_{j}\right) \partial} 1_{x_{i}<x_{j}}+\left(\mathfrak{S}_{t, x_{i}, r_{i}}-\mathfrak{S}_{t, x_{i}, r_{i}}^{\mathfrak{h}^{-}}\right)^{*}\left(\mathfrak{S}_{t,-x_{j}, r_{j}}-\mathfrak{S}_{t,-x_{j}, r_{j}}^{\mathfrak{h}^{+}}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{S}_{t, x, r}^{\mathfrak{h}}(z, v)=E_{z}\left[\mathfrak{S}_{t, x-\tau_{\mathfrak{h}}, r}(B(\tau), v)\right], \quad \mathfrak{S}_{t, x, r}=e^{\frac{t}{3} \partial^{3}+x \partial^{2}-r \partial} \tag{4}
\end{equation*}
$$

The expectation is taken with respect to a Brownian motion starting from z and $\tau_{\mathfrak{h}}$ is the hitting time of \mathfrak{h} of a Brownian motion starting at z.
Conjecturally, the KPZ fixed point is the unique process with the following properties:

1. (1:2:3 invariance) $\alpha \mathfrak{h}\left(\alpha^{-3} t, \alpha^{-2} x ; \alpha^{-1} \mathfrak{h}_{0}\left(\alpha^{2} x\right)\right) \stackrel{\text { dist }}{=} \mathfrak{h}\left(t, x ; \mathfrak{h}_{0}\right), \alpha>0$.
2. (Invariance of Brownian motion) If $B(x)$ is a two-sided Brownian motion with diffusion coefficient 2, then for each $t>0, \mathfrak{h}(t, x ; B)-\mathfrak{h}(t, 0 ; B)$ is also two-sided Brownian motion in x with diffusion coefficient 2.
3. (Skew time reversibility) $P(\mathfrak{h}(t, x ; \mathfrak{g}) \leq-\mathfrak{f}(x))=P(\mathfrak{h}(t, x ; \mathfrak{f}) \leq-\mathfrak{g}(x))$.
4. (Stationarity in space) $\mathfrak{h}\left(t, x+u ; \mathfrak{h}_{0}(x-u)\right) \stackrel{\text { dist }}{=} \mathfrak{h}\left(t, x ; \mathfrak{h}_{0}\right)$.
5. (Reflection invariance) $\mathfrak{h}\left(t,-x ; \mathfrak{h}_{0}(-x)\right) \stackrel{\text { dist }}{=} \mathfrak{h}\left(t, x ; \mathfrak{h}_{0}\right)$.
6. (Affine invariance) $\mathfrak{h}\left(t, x ; \mathfrak{h}_{0}(x)+a+c x\right) \stackrel{\text { dist }}{=} \mathfrak{h}\left(t, x+\frac{1}{2} c t ; \mathfrak{h}_{0}(x)\right)+a+c x+\frac{1}{4} c^{2} t$.

- Prove (2)-(5) by passing to the limit from PNG, and (1) and (6) directly from the transition probability formula.

Exercise 7.8 Recall $\mathcal{A}(x)$ is the Airy process, defined as

$$
\begin{equation*}
\mathcal{A}(x)=\mathfrak{h}\left(1, x ; \mathfrak{d}_{0}\right)+x^{2} . \tag{5}
\end{equation*}
$$

Recall $F_{\mathrm{GOE}}(s)=\operatorname{det}\left(I-P_{s} B_{0} P_{s}\right)_{L^{2}(\mathbb{R}, d x)}$ where $B_{0}(x, y)=\operatorname{Ai}(x+y)$.

- Prove Johansson's formula,

$$
\begin{equation*}
F_{\mathrm{GOE}}\left(2^{-1 / 3} r\right)=\sup _{y}\left\{\mathcal{A}(y)-y^{2}\right\} . \tag{6}
\end{equation*}
$$

Exercise 8.2 Consider the following special discretization on the KdV equation:

$$
\begin{equation*}
\partial_{t} \phi_{n}=\left(\phi_{n+1}+\phi_{n}+\phi_{n-1}\right)\left(\phi_{n+1}-\phi_{n-1}\right)-\left(\phi_{n+2}-2 \phi_{n+1}+2 \phi_{n-1}-\phi_{n-2}\right) . \tag{7}
\end{equation*}
$$

- Show that the measure with ϕ_{n} i.i.d. $N\left(0, \sigma^{2}\right)$ is invariant for (7).
- Show that for the correct value of σ it is also invariant for the very similar equation

$$
\begin{equation*}
d \phi_{n}=\left[\left(\phi_{n+1}+\phi_{n}+\phi_{n-1}\right)\left(\phi_{n+1}-\phi_{n-1}\right)+\left(\phi_{n+1}-2 \phi_{n}+\phi_{n}\right)\right] d t+d B_{n+1}-d B_{n} \tag{8}
\end{equation*}
$$

where B_{n} are independent Brownian motions.

- Define $h_{n+1}-h_{n}=\phi(n)$. Why is h a discretization of the KPZ equation?

It is referred to as the Sasamoto-Spohn model. Note that neither (7) nor (8) is expected to be integrable in any sense.

