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Motivation

• Our motivation for this study was to understand the correlation measure
for a critical two-dimensional random continuum polymer measure
corresponding to the 2d SHF (which is our ongoing research topic).

• The critical two-dimensional stochastic heat flow (2d SHF) is a
distributional limit of point-to-point partition functions for
(1+2)-dimensional models for a directed polymer in a random environment
(DPRE) within a critical weak-coupling scaling regime.

• In this work, we have focused on constructing the process and
investigating its important properties.
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Background Material
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Brownian local time

• Let B be a one-dimensional Brownian motion on (Ω,F ,P).

• For ω ∈ Ω, the zero set of B is defined as

O(ω) =
{
t ∈ (0,∞) : Bt(ω) = 0

}
.

• How much time does the Brownian motion B spend at the origin?

• The zero set is closed, uncountable, and has Lebesgue measure zero
almost surely.

• Paul Lévy introduced the notion of local time, which is the most natural
tool to measure the size of the zero set O(ω).
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Brownian local time, cont.

• Let B be a one-dimensional Brownian motion on (Ω,F ,P).

• Given ε ∈ (0, 1), define the random variable

Lεt =
1

2ε
meas

{
s ∈ [0, t] : |Bs | ≤ ε

}
︸ ︷︷ ︸
Time spent by B within distance ≤ ε

,

where meas(S) denotes the Lebesgue measure of a set S ⊂ R.

• There exists a continuous process {Lt}t∈[0,∞) such that

Lεt
P−→

ε→0
Lt .

• The process L is called the local time of the Brownian motion B at the
origin.
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Behavior of local time

• Let ϑ(ω, ·) denote the Borel measure on [0,∞) with distribution
function t 7→ Lt(ω), i.e., for all 0 ≤ s < t

ϑ
(
ω, (s, t]

)
:= Lt(ω) − Ls(ω) .

• Then ϑ(ω, ·) is almost surely supported on the zero set O(ω), i.e.,

ϑ
(
ω,

(
O(ω)

)c)
= 0 .

Heuristically, this means that the local time process Lt(ω) increases only
when Bt(ω) = 0.
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Visualizing the sample paths of Local time

(
The sample paths of local time look like the Cantor function.

)
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Two-dimensional analog of local time?

Is there an analog of Brownian local time at the origin (or any fixed point)
in the dimension two case?

• A two-dimensional Brownian motion B does not visit the origin after
time t = 0, i.e.,

O(ω) :=
{
t ∈ (0,∞) : Bt(ω) = 0

}
= ∅ a.s.

• Consequently, there is not an analogous two-dimensional Brownian local
time (at the origin).

LT = 0
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Model Formulation
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An integral kernel arising in several articles

We will discuss an R2-valued Markov process defined through an
interesting integral kernel f λt arising in several articles:

Bertini and Cancrini
The two-dimensional stochastic heat equation: renor-
malizing a multiplicative noise
J. Phys. A: Math. Gen. (1998)

Gu, Quastel, Tsai
Moments of the 2d SHE at criticality
Prob. Math. Phys. (2021)

Caravenna, Sun, Zygouras
The critical 2d stochastic heat flow
Inventiones mathematicae. (2023)

Y.-T. Chen
The critical 2d delta-Bose gas as mixed-order asymp-
totics of planar Brownian motion
arXiv:2105.05154 (2021)
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The integral kernel and special functions

• For λ, t > 0 define f λt : R2 × R2 → (0,∞) by

f λt (x , y) = gt(x − y) + hλt (x , y) ,

where gt(x) :=
1

2πt e
− 1

2t
|x |2 and hλt : R2 × R2 → [0,∞] is given by

hλt (x , y) := 2πλ

∫
0<r<s<t

gr (x) ν
′((s − r)λ

)
gt−s(y) ds dr ,

wherein ν ′ is the derivative of the Volterra function

ν(x) =

∫ ∞

0

x s

Γ(s + 1)
ds .

• Next, we define Hλ
t : R2 → [0,∞] as the partial integral of hλt (x , ·).
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Different representations of the function f λt (x , y)

Recall that

f λt (x , y) = gt(x − y) + 2πλ

∫
0<r<s<t

gr (x) ν
′((s − r)λ

)
gt−s(y) ds dr ,

• The function f λt has the following form in Gu, Quastel, Tsai, Moments
of the 2d SHE at criticality, Prob. Math. Phys. (2021)
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Connecting f λt (x , y) to a 2d Schrödinger point potential

For each λ > 0 there is a Schrödinger Hamiltonian Hλ on L2
(
R2

)
that can

be understood as acting on ψ ∈ H2,2
(
R2\{0}

)
as

Hλψ(x) = −1

2
∆ψ(x) = −1

2

(
∂2

∂x21
+
∂2

∂x22

)
ψ(x) , x ∈ R2\{0} ,

with the following asymptotic boundary condition near x = 0

ψ(x)
|x |≪1∼

(
constant

depending on ψ

)
·
(
log

λ |x |2

2
+ γEM

)
+ o(1) ,

where γEM = .577 · · · is the Euler-Mascheroni constant.

(See Solvable Models in Quantum Mechanics by Albeverio et al. pp. 97-98)

Then f λt (x , y) is the integral kernel of etH
λ
:(

etH
λ
ψ
)
(x) =

∫
R2

f λt (x , y)ψ(y) dy .
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Defining a transition probability semigroup

Fix T , λ > 0.

For 0 ≤ s < t ≤ T , define dT ,λ
s,t : R2 × R2 → [0,∞] for x , y ∈ R2 with

x ̸= 0 by

dT ,λ
s,t (x , y) = f λt−s(x , y)

1 + Hλ
T−t(y)

1 + Hλ
T−s(x)

.

Then ∫
R2

dT ,λ
s,t (x , y) dy = 1 ,

and dT ,λ
s,t satisfies the Chapman-Kolmogorov relation below holds:∫

R2

dT ,λ
r ,s (x , y) dT ,λ

s,t (y , z) dy = dT ,λ
r ,t (x , z) , r < s < t .
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A forward Kolmogorov equation, drift, and an SDE

• dT ,λ
s,· (x , ·) satisfies the 2d forward Kolmogorov equation

∂

∂t

[
dT ,λ
s,t (x , y)

]
=

1

2
∆y d

T ,λ
s,t (x , y)−∇y ·

[
bλT−t(y) d

T ,λ
s,t (x , y)

]
,

for ∆y := ∂2

∂y2
1
+ ∂2

∂y2
2
, ∇y :=

(
∂
∂y1
, ∂
∂y2

)
, and the drift bλt : R2 → R2 is

bλt (y) := ∇y log
(
1+Hλ

t (y)
)

= − y

|y |
bλt

(
|y |

)
,

for y ̸= 0, where bλt : (0,∞) → (0,∞) is a decreasing function.

• The corresponding stochastic differential equation has the form

dXt = dBt + bλT−t(Xt) dt ,

where {Bt}t∈[0,T ] is a standard two-dimensional Brownian motion.
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The radial process

The radial process Rt := |Xt | satisfies the SDE

dRt = dBt +
1

2Rt
dt −bλT−t(Rt) dt ,

where B is a standard 1d Brownian motion.

• The bracketed equation is the SDE for a dimension-2 Bessel process,
which a.s. never returns to the origin.

• When 0 < |Rt | ≪ 1, −bλT−t(Rt) is small compared to 1
2Rt

:

bλT−t(a)
a→0∼ 1

a log 1
a

a→0
≪ 1

2a
.

• Does the process X visit the origin with positive probability? Yes!

Recall: A planar Brownian motion a.s. never returns to the origin.
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Path measures

• Define the path space Ω := C
(
[0,∞),R2

)
.

• Let B(Ω) denote the Borel σ-algebra on Ω.

• Let X = {Xt}t∈[0,∞) denote the coordinate process on Ω, i.e.,

Xt(ω) := ω(t) , ω ∈ Ω .

• Let FX = {FX
t }t∈[0,∞) be the filtration generated by X, i.e.,

FX
t := σ

{
Xs : s ∈ [0, t]

}
.

Proposition (Clark and M. (2023+))

Fix x ∈ R2 and T , λ > 0. There exists a unique probability measure PT ,λ
x

on (Ω,B(Ω)) under which the coordinate process X has initial

distribution δx and is Markov with transition density function dT ,λ
s,t (y , z)

(with respect to FX).
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Main Results

Barkat Mian (U. Miss) On planar Brownian motion singularly tilted through a point potentialJuly 8-19, 2024 19 / 27



Reachability of the origin

For ω ∈ Ω, define the zero set of X as

O(ω) :=
{
t ∈ [0,∞) : Xt(ω) = 0

}
,

and the event O =
{
ω : O(ω) ̸= ∅

}
.

Proposition (Clark and M. (2023+))

Fix any T , λ > 0 and x ∈ R2\{0}.

PT ,λ
x [O] > 0.

{Xt}t∈[0,∞) is a two-dimensional Brownian motion under PT ,λ
x

conditioned on the event Oc .
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The local time process at the origin

Given ε ∈ (0, 1), define the process
{
Lεt
}
t∈[0,∞)

by

Lεt := log 2
2ε2 log2 1

ε

meas
{{

r ∈ [0, t] : |Xr | ≤ ε
}}

︸ ︷︷ ︸
Time spent by X within distance ≤ ε

.

Theorem (Clark and M. (2023+))

Fix some T , λ > 0 and a Borel measure µ on R2. There exists a
continuous process {Lt}t∈[0,∞) on Ω for which

sup
t∈[0,T ]

∣∣Lεt − Lt
∣∣ ε→0−→ 0 in L1

(
PT ,λ
µ

)
-norm .

Moreover, L is PT ,λ
µ almost surely constant over the interval [T ,∞).

The process L is called the local time of X at the origin.

Recall: The local time does NOT exist for planar Brownian motion.
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Radon-Nikodym derivative of PT ,λ′
µ w.r.t PT ,λ

µ

Given T , λ, λ′ > 0 define Rλ,λ
′

T : R2 → [0,∞) by

Rλ,λ
′

T (x) :=


1+Hλ′

T (x)

1+Hλ
T (x)

for x ̸= 0

limx→0 R
λ,λ′

T (x) = ν(Tλ′)
ν(Tλ) for x = 0.

Theorem (Clark and M. (2023+))

Fix some T , λ, λ′ > 0 and a Borel probability measure µ on R2. The

probability measure PT ,λ′
µ is absolutely continuous with respect to PT ,λ

µ

and has Radon-Nikodym derivative

dPT ,λ′
µ

dPT ,λ
µ

= Rλ
′,λ

T (X0)

(
λ′

λ

)LT

a.s. PT ,λ
µ .
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Set of times X visits the origin

Proposition (Clark and M. (2023+))

Fix some T , λ > 0 and a Borel probability measure µ on R2. Let
ϑ ≡ ϑ(ω, ·) denote the random Borel measure on [0,∞) having

distribution function t 7→ Lt(ω). The following statements hold for PT ,λ
µ

almost every ω ∈ Ω.

The zero set O(ω) is uncountable when ω ∈ O.

The set O(ω) has Hausdorff dimension 0.

The measure ϑ(ω, ·) takes full weight on O(ω). (i.e., Lt increases
only when Xt = 0)

The zero set of one-dim Brownian motion has Hausdorff dimension 1
2 .
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Summary

• Starting with a special integral kernel arising in several recent articles,
we constructed a transition density function for a two-dimensional diffusion
process gently attracted to zero.

• We discussed the zero set and local time for this two-dimensional
diffusion, emphasizing that these do not exist for Brownian motion in
dimension 2.
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The End
Thanks for listening!
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