Positivity everywhere

Lecture 1

Natasha Blituić
(Queen Mary University of London)

TA: SLim Kammoun (ENS $\mapsto$ Poitiers)

Virginia Integrable Probability Summer School July 2024

Rough format:

Lectures - bird's eye view
Tutorials - work out the details

Many interconnected themes: choose jour own adventure!

Good to keep in mind:

- Look to understend (familiar) ideas from multiple perspectives
- Look for interesting juxtapositions

Table of Contents
(1) Positivity - in what sense?
(2) The moment sequencer's toolkit
(3) Fruits \& gifts \& many open questions

Pant I: Positivity (non-negativity) everywhere


$$
\text { Notation: }[n]:=\{1,2, \ldots, n\}
$$

$$
\begin{aligned}
& {\left[a_{i j}\right] \quad \text { set. } \quad a_{i j} \geqslant 0 \quad \forall i, j} \\
& \text { (Maybe km, } \\
& \text { maybe infinite) } \\
& A=\left[a_{i j}\right]=\left[\overline{a_{j i i}}\right] \quad \text { set. }\langle A v, v\rangle \geqslant 0 \quad \forall v \\
& \operatorname{det}\left[a_{i j}\right]_{i, j \in I} \geq 0 \quad \forall I \quad \text { Principal minors } \\
& \operatorname{det}\left[a_{i j}\right]_{1 \leq i, j \leq n} \geq 0 \quad \forall n \quad \text { Principal Leading minors } \\
& \operatorname{det}\left[a_{i j}\right]_{i \in I, j \in J} \geq 0 \quad \forall|I|=|J| \\
& \operatorname{det}\left[a_{i j}\right]_{i \in I, j \in J} \geq 0 \quad \forall|I|=|J|=2 \quad 2 \times 2 \text { minors } \\
& \operatorname{det}\left[a_{i, j}\right]_{i \in I, j \in J} \geq 0 \quad \forall|I|=|J|=\operatorname{rank} \quad \text { Maximal minors }
\end{aligned}
$$

Def A matrix is totally positive if all of its minors are non-negative.

Example 1

Birth-death processes

$$
\begin{array}{l|l}
\overbrace{\mu_{1}}^{\lambda_{0}}(2 \overbrace{\mu_{2}}^{\lambda_{1}} \cdots & p_{k, k+1}^{\lambda_{2}}(\Delta t)=\lambda_{k} \Delta t+o(\Delta t) \\
p_{k, k-1}(\Delta t)=\mu_{k} \Delta t+o(\Delta t) \\
p_{j, k}(t)=\mathbb{P}(x(t)=k \mid x(0)=j) & p_{k, k}(\Delta t)=1-\left(\lambda_{k}+\mu_{k}\right) \Delta t+o(\Delta t)
\end{array}
$$

Whom (Marlin $6 M_{c}$ Gregor 'sp) for any $t>0$, $\left[p_{j i k}(t)\right]_{j i k \geq 0}$ is totally positive.

Proof sketch $\# 1\left(K M^{\prime} \Omega 7, \oint 5\right)$ :

$$
\left.\begin{array}{l}
P_{k, k+1}(\Delta t)=\lambda_{k} \Delta t+o(\Delta t) \\
P_{k, k-1}(\Delta t)=\mu_{k} \Delta t+o(\Delta t) \\
P_{k, k}(\Delta t)=1-\left(\lambda_{k}+\mu_{k}\right) \Delta t+o(\Delta t)
\end{array}\right\} \quad \begin{aligned}
& P_{n}(t)=\left[P_{j, k}(t)\right]_{0 \leq i, j \leq n} \\
& P_{n}(0)=I_{n} \\
& \frac{d}{d t} P_{n}(t)=A_{n} P_{n}(t)
\end{aligned}
$$

where $A_{n}=\left[\begin{array}{cccc}-\left(\lambda_{0}+\mu_{0}\right) & \lambda_{0} & & 0 \\ \mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \ldots & \\ & \mu_{2} & & \\ & & & \\ \mu_{n} & -\left(\lambda_{n}+\mu_{n}\right)\end{array}\right]$

Observe $I+\frac{t A_{n}}{n}$ is TP for $n$ large enough.
Deduce $e^{t A_{n}}$ is $T P \quad \forall t>0$.

Some further questions you could ask:

- Which solutions $P$ satisfying the backward equation $\frac{d}{d t} P(t)=A P(t)$ and the fra eq $\frac{d}{d t} P(t)=P(t) A$ $P(0)=I$ are transition matrices of some Markov process?
- If we start with a time-differentiable matrix of probabilities and if the matrix has "enough positivity". will its time derivative be of the tridiagonal form?
(see KM'57)

Proof sketch \#2 (KM'5S): n particles executing the birth death process


$$
\operatorname{det}\left[p_{i j}(t) ; i_{1}<i_{2}<\ldots<i_{n}\right]=\sum_{\sigma \in j_{n}}(-1)^{i n v(\sigma)} p_{i_{1}, j_{\sigma(1)}}(t) p_{i_{2}, \delta_{\sigma(2)}}(t) \ldots j_{i_{n}} j_{\sigma(n)}(t)
$$

Claim:
$\operatorname{det}\left[\begin{array}{r}\left.p_{i j}(t), \begin{array}{rl}i_{1}<i_{2} L \ldots<i_{n} \\ , j_{1}<j_{2}<\ldots<j_{n}\end{array}\right]=\operatorname{prob}\left(\text { at time } t \text {, particles found in } j_{1}, j_{2}, \ldots, j_{n}\right.\end{array}\right.$ without having coincided in any state)
$\operatorname{det}\left[p_{i j}(t), \begin{array}{l}i_{1}<i_{2}<\ldots<i_{n} \\ j_{1}<j_{2}<\ldots<j_{n}\end{array}\right]=\sum_{\sigma \in S_{n}}(-1)^{i n v(\sigma)} p_{i_{1}, j_{\sigma}(1)}(t) \cdots p_{i_{n} j_{\sigma(n)}}(t)=$
prob (at time $t$, particles found in $j_{1}, j_{2}, \ldots, j_{n}$ resp. Without having wincided in any state)


Proof by example:
Pij(t) computed from

vs

same overall probability but opposite signs

Some further questions you could ask:

- Where did we use the fact that the process is birth-death?
- What about a general Marion process on $\mathbb{N}_{0}$.

Exercise: Write down formula for the dekerminal

- Did we need to hove probabilities, or even positive weights?

Independently: Gessel-Viennot '85 based on Lindström '73
$G=(V, E)$ locally finite edge-weighted directed acyclic groph,
$A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\} \subseteq V \quad$ (need not be disjoint)
Weight of a path $p=\omega t(p)=$ product of edge weights
$W=\left[w_{i j}\right]_{1 s i, j \leq n}$ where $w_{i j}=\sum_{\text {paths } p} w t(p)$

$$
a_{i} \mapsto b_{j}
$$

Lemma (LGV)

$$
\operatorname{det} W=\sum_{\sigma \in S_{n}}(-1)^{\operatorname{inv(\sigma )}} \sum^{\text {vertex-disjoint paths }} \sum_{p_{1}: a_{n}} \omega b_{\sigma(1)} \omega t\left(p_{n}\right)
$$

Proof:
same idea (exercise)


Example 2

Matroids: unify several notions of independence

Def Matroid $M=(E, B)$, where $E$ is a finite set ("ground set") and $B \subseteq 2^{E}$ ("bases of $M "$ ), $B \neq \varnothing$, s.t. $\forall B_{1}, B_{2} \in \mathcal{B}$ and $b_{1} \in B_{1}-B_{2}, \exists b_{2} \in B_{2}-B_{1}$ w/ $\left(B_{1}-\left\{b_{1}\right\}\right) \cup\left\{b_{2}\right\} \in B$. ("basis exchange axiom")
E.g. $A \in \operatorname{Mat}_{d \times n}(K), \operatorname{rank}(A)=d, A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Let $B=\left\{B \leq[n] \mid\left\{a_{i}\right\}_{i e}\right.$ form a linear basis for $\left.k^{d}\right\}$.
Check: $M(A)=([n], B)$ is a matroid.
Such a matroid is representable.

Def. (Postnilov) Positroid: a matroid on [n] representable b) columus of a real matrix, whose maximal minors are non-negative.

Posilroids $\longleftrightarrow$ Decorated permutations e.s. 1536427
$\longleftrightarrow$ Grossmann neclelaces
$\longleftrightarrow J$-diagrams

$$
\binom{\text { Postnikor'06 }}{\text { Oh'11 }}
$$

$\longleftrightarrow$ equiv. class. of plabic graphs

Mang matroidal propenties: closure properties, duality

Example 3 (subtler)

From now on: $\left(a_{n}\right)_{n \geq 0}$ denotes a real sequence

Def $\left(a_{n}\right)_{n}$ is unimodal if $a_{0} \leq a_{1} \leq \ldots \leq a_{k} \geq a_{k+1} \geq \ldots$ for some $0 \leq t \leq n$.

Def $\left(a_{n}\right)$ is $\log$-concave if $a_{k}^{2} \geq a_{k-1} a_{k+1} \not \forall k$

Def $\left(a_{n}\right)$ is $\log$-convex if $a_{k}^{2} \leq a_{k-1} a_{k+1} \nLeftarrow k$

Example: $\quad\binom{n}{0},\binom{n}{1},\binom{n}{2}, \cdots,\binom{n}{n-1},\binom{n}{n}$

- unimodal
- log-concave: $\frac{\binom{n}{k}^{2}}{\binom{n}{k-1}\binom{n}{k+1}}=\frac{(n-k+1)(k+1)}{(n-\varepsilon) k}>1$

Exercise: if $a_{n}>0 \forall n, \log$-concavity $\Rightarrow$ Unimodality.

Notation: $[n]_{\delta}:=\frac{1-q^{n}}{1-q}=1+q+\cdots+q^{n-1}$ with $[0]_{b}:=0$

$$
[n]_{6}!:=[n]_{6}[n-1]_{6} \cdots[2]_{6}[1]_{q} \text { with }[0]_{9}!:=1
$$

Exercise: Show that

$$
\left[\begin{array}{l}
n \\
0
\end{array}\right]_{q},\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q,}, \cdots,\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{b}!}{[n-k]_{b}![k]_{q}!}, \cdots,\left[\begin{array}{l}
n \\
n
\end{array}\right]_{q}
$$

is log-concave for $8 \geq 0$.

The (Huh'O9) Consider a matroid M representable over a field of characteristic 0 with characteristic polynomial

$$
X_{M}(q)=\mu_{0} q^{r+1}-\mu_{1} q^{r}+\cdots+(-1)^{r+1} \mu_{r+1}
$$

The sequence $\mu_{0}, \ldots, \mu_{r+1}$ is log-concave.

Proves a conjecture of Read ('68) that chromatic polynomials of graphs are unimodal. More genenally:
(ex.) Conj (Rota, Heron, Walsh ~'70)

Tho Adiprasito, Huh, Kate is
Coefficients of the characteristic polynomial of any finite Matrold form a log-concave sequence.

Toeplite and Hankel matrices

Def To a real seq. $\left(a_{n}\right)_{n \geq 0}$, we can associate the infinite Toeplitz matrix and Hankel matrix.

$$
\left(\begin{array}{ccccc}
a_{0} & & & & \\
a_{1} & a_{0} & & & 0 \\
a_{2} & a_{1} & a_{0} & & \\
a_{3} & a_{2} & a_{1} & a_{0} & \\
\vdots & \vdots & & \ddots & \\
a_{d} & a_{d-1} & \cdots & & a_{1} \\
\vdots & \vdots & & & \ddots
\end{array}\right) \quad\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & \ldots \\
a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
a_{2} & a_{3} & a_{4} & a_{5} & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
a_{d} & a_{d-1} & \cdots \\
\vdots & \vdots &
\end{array}\right)
$$

$$
T(a)=\left(\begin{array}{cccccc}
1 & & & & & \\
a_{1} & 1 & & & 0 \\
a_{2} & a_{1} & 1 & & & \\
a_{3} & a_{2} & a_{1} & 1 & & \\
\vdots & \vdots & & \ddots & \\
a_{d} & a_{d-1} & \cdots & & a_{1} & 1 \\
\vdots & \vdots & & & & \ddots
\end{array}\right)
$$

Thm (Schoenbeng, Aissen-Schoenberg-Whitney, Edvei '48-'53 See also Thoma' 64)

T(a) is totally positive iff in some $n$ bhd of $z=0$

$$
1+a_{1} z+a_{2} z^{2}+\cdots=e^{z \alpha} \prod_{i \geq 0} \frac{\left(1+\beta_{i} z\right)}{\left(1-\gamma_{i} z\right)}
$$

for $\alpha \geq 0, \beta_{1} \geq \beta_{2} \geq \ldots \geq 0, \gamma_{1} \geq \gamma_{2} \geq \ldots \geq 0$ with $\sum_{i} \beta_{i}+\sum_{i} \gamma_{i}<\infty$.

Rietsch'O1: parametrization of $n \times n$ totally positive Toeplitz

$$
T(a)=\left(\begin{array}{cccc}
a_{0} & & & \\
a_{1} & a_{0} & & 0 \\
a_{2} & a_{1} & a_{0} & \\
a_{3} & a_{2} & a_{1} & a_{0} \\
\vdots & \vdots & & \ddots \\
a_{d} & a_{d-1} & \cdots & \\
\vdots & \vdots & &
\end{array}\right) \quad \begin{aligned}
& \text { Observe: } \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}(a) \text { totally positive }
$$

E.g. $\quad\binom{n}{0}, \cdots,\binom{n}{k}, \cdots,\binom{n}{n}$
$\left\langle\begin{array}{l}n \\ 0\end{array}\right\rangle, \cdots,\left\langle\begin{array}{l}n \\ \varepsilon\end{array}\right\rangle, \cdots,\left\langle\begin{array}{l}n \\ n\end{array}\right\rangle$ Eulerion \#'s, e.g. $\sigma e \operatorname{Sn} \omega /$ bascents
$\left[\begin{array}{c}n \\ 0\end{array}\right], \ldots,\left[\begin{array}{l}n \\ 6\end{array}\right], \ldots,\left[\begin{array}{l}n \\ n\end{array}\right]$ stirling $\pm 1$ e.s. $\left.\sigma e s_{n} w\right)$ bycles
$\left\{\begin{array}{l}n \\ 0\end{array}\right\}, \ldots,\left\{\begin{array}{l}n \\ k\end{array}\right\}, \cdots,\left\{\begin{array}{l}n \\ n\end{array}\right\} \quad$ Stinling $\# 2$, e.g. $\frac{\text { partitions of }[n]}{\text { int } k \text { parts }}$

What about log convexity?
Some log-convex sequences: $a_{k}{ }^{2} \leqslant a_{k-1} a_{k+1}$
n! e.g. permutations
Bn Bell \#'s e.g. set partitions
Cu Catalon\#'s e.g. hon-crossing set partitions

But also:

$$
\left(\sum_{k=0}^{n}\binom{n}{k} x^{k}\right)_{n \geq 0} \quad \forall x \in \mathbb{R} \quad \text { (trivial) }
$$

Eulerion $\quad\left(\sum_{k=0}^{n}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle^{x^{k}}\right)_{n \geqslant 0} \quad(x \geqslant 0)$

$$
\text { stirling II } \quad\left(\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k}\right)_{n \geqslant 0}(x \geqslant 0)
$$

Def A real sequence $\left(a_{n}\right)_{n \geq 0}$ is
$\left.\begin{array}{l}\text { - Toeplitz totally positive if } T(a)=\left(\begin{array}{ccccc}a_{0} & & & & \\ a_{1} & a_{0} & & & 0 \\ a_{2} & a_{1} & a_{0} & & \\ a_{3} & a_{2} & a_{1} & a_{0} & \\ \vdots & \vdots & & \\ \text { is totally positive. } & a_{d-1} & \ldots & \ddots & \\ \vdots & \vdots & & & a_{1} \\ \hline & & & \ddots\end{array}\right), ~\end{array}\right)$
$\begin{aligned} & \text { - Hanker totally positive if } H(a)=\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & a_{3}\end{array} \ldots\right. \\ & a_{1} \\ & a_{2}\end{aligned} a_{3} a_{4} \ldots$.
Exercise:
Toeplitz TP $\Rightarrow$ (og-concave
Hanker TP $\Rightarrow$ Cog. convex

Take your favorite combinatorial sequence $\left(a_{n}\right)$.
(From now on, $a_{0}=1$ )

When does there exist a probability measure $\mu$ on $\mathbb{R}$ st.

$$
a_{n}=\int_{\mathbb{R}} x^{n} d \mu(x) \quad \forall n \in \mathbb{N} ?
$$

The (Hamburger 1920-21)
( $\left.a_{n}\right)_{n \geq 0}$ is a moment sequence of a positive Bored measure $\mu$ on $\mathbb{R}$ iff $\forall k \in \mathbb{N}, \forall z_{0}, z_{1}, \ldots, z_{k} \in \mathbb{C}$, $\sum_{j, e=0}^{k} a_{j+e} z_{j} \bar{z}_{l} \geq 0$, i.e. the Hanker matrices $\left[a_{i+j}\right]_{i, j \leq n}$ are positive semidefinite $t h$.
proof $\rangle$
$\Leftrightarrow$ Subsequent lecture

Thm (Stieltjes 1894-95, Gantmakher-Krein'1937) TFAE:
(1) $\exists \mu \geqslant 0$ on $[9, \infty)$ s.t. $a_{n}=\int_{[0, \infty)} x^{n} d \mu(x)$
(2) The infinite Hankel matrix $\left[\begin{array}{cccc}a_{0} & a_{1} & a_{2} & \cdots \\ a_{1} & a_{2} & a_{3} & \cdots \\ a_{2} & a_{3} & \cdots\end{array}\right]$ is totally $\left.\begin{array}{c} \\ \vdots\end{array} \begin{array}{ll} & \end{array}\right]$ positive.

Recap: $a_{0}=1 \quad H_{n}(a)=\left[\begin{array}{cccc}a_{0} & a_{1} & \ldots & a_{n} \\ a_{1} & a_{2} & \ldots & a_{n+1} \\ \vdots & & & \\ a_{n} & a_{n+1} & \cdots & a_{2 n}\end{array}\right]$
$H_{n}(a)$ positive semidefinite $\Longleftrightarrow a_{n}$ is a sequence of $\rightarrow h$

H(a) totally positive
$\Longleftrightarrow a_{n}$ is a sequence of moments of a probability measure on $[0, \infty$ ) (Stieltjes moment problem)
$\Longrightarrow a_{n}$ is log-convex

Tea) totally positive
$\Longrightarrow a_{n}$ is $\log$-concave

Positivity is natural:

$$
\begin{aligned}
& n!, C_{n}, B n \\
& \binom{n}{0}, \ldots,\binom{n}{k}, \ldots,\binom{n}{n} \\
& \left\langle\begin{array}{l}
n \\
0
\end{array}\right\rangle, \ldots,\left\langle\begin{array}{l}
n \\
n
\end{array}\right\rangle, \ldots,\left\langle\begin{array}{l}
n \\
n
\end{array}\right\rangle \\
& {\left[\begin{array}{l}
n \\
0
\end{array}\right], \ldots,\left[\begin{array}{l}
n \\
n
\end{array}\right], \ldots,\left[\begin{array}{l}
n \\
n
\end{array}\right]} \\
& \left\{\begin{array}{l}
n \\
0
\end{array}\right\}, \ldots,\left\{\begin{array}{l}
n \\
0
\end{array}\right\}, \ldots,\left\{\begin{array}{l}
n \\
0
\end{array}\right\}
\end{aligned}
$$

But not to be expected:

- 4 matroids on $[n]: 1,2,6,8,17,38,98, \ldots$ A0Jsses
- \& binary matroids on [n]: $1,2,4,8,16,32,68,148, \ldots 4076766$
- H ternary matroids on $[n]: 2,4,8,17,36,85, \ldots$ A 076892
- \# simple matroids on $[n]: 1,2,4,9,26, \ldots$ A002773
and many more examples (coming soon) that are NOT moment sequences.

Positivity shows up in unexpected places:

Thm
\#positroids on [n]
\# decorated permutations on [u] (Postrikov)
$=n^{\text {th }}$ moment of $1+\operatorname{Exp}(1)$ (Ardila, Zincoin, Williams ' 16 )

$$
\left(=\int_{1}^{\infty} x^{n} e^{-(x-1)} d x\right.
$$



Def (B.-Steingrimsson '21) A $k$-arnangement on [ $n$ ] is a permutation $\sigma \in S n$, together with a $b$-coloring of its fixed points.

Remork: $k=2$ decorated permutations

Thm (B.-Steingrimsson '21)
\# $k$-arrangemeuts on $[n]=n^{\text {th }}$ moment of $k-1+\operatorname{Exp}(1)$

$$
\left(=\int_{1}^{\infty} x^{n} e^{-(x-k+1)} d x\right.
$$


<proof> Generating functions.
$\leadsto$ Vavious other combinatorial propenties
$\leadsto$ Furthen unexpected occurence in a different probabilistic setfing $\} \begin{gathered}\text { Lec } \\ 4\end{gathered}$

Recall:
$\left[P_{j i k}(t)\right]_{j i k \geq 0}$ is totally positive $\forall t>0$

See Kawlin \& $M_{c}$ Gregor ' 57 for consequences 'sg for generalizations

Lee 4 will contain recent examples of a probabilistic "artifact" carrying additional probabilistic structure.

Positivity shows up in unexpected places:

Observation / Program of work
(B. \& Steingrimsson, Elves J Price \& Guttmonn):

Hard combinatorial problems often display some form of positivity. (Focus: moment sequences)

- Deeper structural understanding
- Better asymptotics
- New tools

Observation / Program of work
( $B$. \& Steingrimsson, sotal so Beng, $\cdots$ ):

Moment sequences in combinatoris tend to be "related", e.g. following from some general combinatorial principle

- Unifying frameworles
- Interesting juxtapositions
- New tools / New definitions

