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Themes how we'll choose to interpret them

Universality same prob structures arising in different contexts

Integrability Explicit formulas

Algebraic combinatorial underpinning

Positivity When can a set of algebraic combinatorial

non negativity objects underpin probabilistic objects
























































































formal power series

will enable us to discuss symmetric polynomials functions

generating functions

continued fractions
























































































Def

RC K denotes the algebra of formal power series over ringR

with do a ER equipped with addition

4 a be tautbut I
k

and multiplication 92k bet God
k

where Cy debt e

E g Non example in C a I 20C V227

0

Σ 2 0k oh 11 2 sit
k 0
























































































Equivalently REEK contains all functions C R

interpreted as Σ c k sck
KENO

with addition and multiplication as before

Multivariate version in countably many indeterminates

R 71 242 contains all functions C R g t

C 6 62 0 kn o for all n largeenough interpreted as

Σ Clk ka x.kz
ki ka i i

No
finite degree
monomials

with addition and multiplication defined analogously to

multivariate polynomials
























































































E.g Non example 4 2k If 12k total
Id 0 0 0 I 124.00 0.1.0 7 10,011,0

Σ Σ
n µ ha

hi 2km Ital 1 92 1 713

Addition e g k oh Cottle out

Multiplication ed

E k x Erin

Differentiation e.g x X kx x

sometimes inverses e g
26 1 x
























































































More on inverses will be needed later in univariate setting

Fact exercise K x where k is a field

For any fps 09k ok with a 0 fps be at

sit
an a best 1

In fact
a do

b as by C 1
as a a

a
kt

det
as a a do

are are are ans













































Positivity everywhere continued

and their many occurrences uses in integrable probability
























































































Degree of a monomial 2 21 to d dat du

Projection maps Tu R 2,74 S R a.PK

clki.kz I t clk.kz 190 but tentz

Pa R a.ph S R 2,11

Clk kz I Clk kz I 6 bet d

Together allow us to recover polynomials in 21 Ok Xn

An element CER 2,17h is homogeneous of degreed

if Pd a C i e if c is of the form

Σ
d 42 EN
K that d
























































































Su group of bijections n n n 1,2 n

write of Sa in one line notation 0117012 On

So group of bijections N N of the form

1 012 Oca at it futz uts he

Action of So on R 04,012

For OES f E R 04 Kz

of 0
4

the kz 2,4 s

Fun ie
f14nkzi x

n
a

When of f toe so f is a symmetric function
























































































Check exercise O TE So LER

O f g of t og
o Inf I α of

0 f g of log
OT f off

let A symmetrin elements of R 01,3k

Check exercise A is a subalgebra of R 01 Pk

From now on work with symmetric functions over
























































































Special families in A

Elementary sym fun en Σ 26 Ikn
k ChezC Clem

complete

Homogeneous sym fu l ha Σ 26 Xyz Ryn
kicks Elem

Power sum sym fun pre Σ If
k

Fact exercise see Macdonald

Any one of these families generates

i e A alg en new alg ha new

alg Pa new
























































































Generating functions

En 121 en E I 042

Hn Z ha 2 I I taiz

Pn 12 Pat 2 269 I taiz

Exercise
























































































Toward another interesting basis

A Young diagram Ferrers tableau 2 12 22,7s
is a non increasing sequence in Not with finitely
many non zero terms

It has size 171 922 and

length 112 max k 1 22 70

E g 121 17

112 4

25

Denote by In the set of diag's with 12 h

and the set of all Young diag's
























































































Def the Schur polynomial in n variables parametrized by
a Young diagram with 111 Eu is

xp
t
sepath l oct 1

det a sit the Sfmimetrization
of

521 1011 712 2n i hi again _at
x sci a

det of on

1 1 1

det x Ji l in

Xi x

This is a polynomial Why it is symmetric Why
























































































Equivalently the Jacobi Trudi identities for a In

Sp x Xn def
h n ha is pen May 1th x pen

May 1 x pen ha 04 pen May 2th x pen

ha ha x pen Magna x pen Man x Xn

Exercise Also available in the basis of en Pn See Macdonald

To each 2 we will associate the Fps

52 Sa X1 X2 04,22

det hx 04,22 ha 1 04,22
i ha ith 04,22

May 1 04,22 ha 04,22 May 2th 04,22

ha l x 04,22 hella 2104,22 happy 04,22
























































































Frequently asked positivity questions

I When does a symmetric function expand positively in a given basis

Eg Them Kostka saca.sn
n.EEi fiiiiij
20 Exercise

E.g When does a symmetric function expand positively in the Schur basis

consequences foralgebraicgeometry

2 So 101 an evaluated on 12 is 20 substitution kit ai i i in

More generally

Def A specialization is an algebra homomorphism p A C ft f p

i e If g p Flp gip f Ip fip

fg p f p g p
ee f g e n
























































































p n e ft Icp

Notice P is defined by its values on elements of an alg basis of A

can view p as any element of 4

Exercise is any substitution xitoai.EC an evaluation

Def P is Schur positive if 52 p 20 he

Allows one to define a measure

Def Okounkov let P P A be two Schur positive

specializations sit Salp Sa Pa A

The Schur measure on is the probability measure

Pp p 12 Salp Salpa
























































































See Borodin Go in lecture notes for examples also

properties uses of Schur measures

Also for the definition of the Schur process a prob measure on

a µ 2 µ 2 1 µ A parametrized b 2n

Schiv positive spec s Pot IPat Pi Pi

general framework giving models that can be analyzed

e g measure on plane partitions α long range TASER
























































































When is a spen p A Schur positive

Recall 521 def
hx that ha team
hazi ha hazteca 2

Mag147 1 Maea halt 2 i h hey

P is Schur positive C b p help is Toeplitz totally positive

corollary Schur positive specializations are parametrized by

220 β βe 20 8,2822 20 sit Bit 760

and given by

hufpa.p.az e itftp.izlizo1 21 27

Analogue for Macdonald functions conj tenor 92 proof Matveen 17
























































































Part I A moment sequencer's toolkit
























































































Recall

Algebrain Representing Positivity of
combinatorial matrix the matrix

object

Prototypical example in probability

combinatorial seq an neo 90 1

When is there some prob measure µ on IR

sit hEN

a for deal

Hamburger positive semi definiteness of the Hankel

matrices ait i j o
























































































1 Continued fractions

Ex 1 Let 60 1 9 2 4n t it is

1 2 3 2 513 815 1 0 1 1 1 112 1 213 1 3 5

Exercise Show that

On It
2

where to O fist fifu it for 2

9 11 2 3 5 8

On 6 1 25
Ex 2 As formal power series

I

0

Euler

1 22
1 37 an 11
























































































Def A Motzkin path of length n is a walk in NoxNo

that starts at 10,07 ends at n 01 consists of

Level steps f j fittest
upsteps it jtil

downsteps did
titi j h

and remains positive lie j o at each step

10,0 17,01

Exercise let mn Motzkin paths with n steps

Then mn 2 1 2 V1 22 322
222








































































Def A Dycle path is a Motzkin path consisting only
of upsteps and downsteps

Exercise Dyck paths with n steps Cn



Recall RC X denotes the set of formal power series

with do a ER equipped with addition

and be at bulk

and multiplication 4 2 bake God

k

where Cy debt e

The topology on R X is the product topology
with the discrete topology on R

i e a'i ol ma
aux iff ai _are for

n largeenough



From now on take

D C or

R quotients of multivariate polynomials

when working with combinatorial statistiis

Recall When 9040 96 has a multiplicative inverse

E g I
1 x 0

2C



Them Flajolet 80

1
The sequence

f 202 β 22

1 2 Z βzZ

amiz put nzo

converges as formal power series Its limit is denoted

I

1 2oz β 22
1 α Z βzZ

Continued



Them Flajolet 80 Moreover

1 Σ we m Z

1 2oz β neo memint
1 α Z βzZ

where M ul is the set of Motzhin paths with n steps

labeled as
α

pg
Citi jtil his.ly

ii it fits it ii j ith o it

with wt m product of the labels

Example
β

α β wt m top apr2

MEMO



Proof by example Start expending
ICalz I

1 202 β 1 202 β Z C 21
1 α Z βzZ

It 4oz β Z C Zl 6oz β Z C'sz t t

Z Calzl I

Z IZ to

z Calz α β Z C 121 do β
Z Cutz 203 2 do β Z C'iz β Z C'at

203 2 do β t β

Exercise write down a proof






































































Move examples

I

l
Z go 24 1 24 3 3 I 2

1 22

I

I
E

Ch z

l Z z E Bu z

I 22

I

l Z i Z go
n I

n
p

2

2
2

2

2

2



Q What does 2h20 βu o imply

Next orthogonal polynomials


