Positivity everywhere

Lecture 3

Natasha Blituić
(Queen Mary University of London)

TA: SLim Kammoun (ENS \& Poitiers)

Virginia Integrable Probability Summer School July 2024

Last time: Formal power series and Continued fractions

$$
\begin{aligned}
& \frac{1}{1-\frac{z}{1-\frac{2 z}{1-\frac{3 z}{\cdots}}}}=\sum_{n \geq 0}(2 n-1)(2 n-3) \cdots 3 \cdot 1 z^{n} \\
& \frac{1}{1-\frac{z}{1-\frac{z}{1-\frac{z}{\cdots}}}}=\sum_{n \geq 0} C_{n} z^{n} \\
& \frac{1}{1-z-\frac{z^{2}}{1-2 z-\frac{2 z^{2}}{\cdots}}}=\sum_{n \geq 0} B n z^{n} \\
& \frac{1}{1-z-\frac{1^{2} \cdot z^{2}}{1-3 z-\frac{2^{2} \cdot z^{2}}{\left(\frac{2}{\cdots}\right.}}}=\sum_{n \geq 0} n!z^{2 n}
\end{aligned}
$$

(2) Orthogonal Polynomials

Stank wi $\left(a_{n}\right)_{n \geq 0}$ real seq.

Define Cinear functional L on $\mathbb{C}[x]$ by $L\left(x^{n}\right)=a_{n}$
Observe:
for $p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$,

$$
\begin{aligned}
L(p \bar{p}) & =L\left(\left(c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right)\left(\bar{c}_{0}+\bar{c}_{1} x+\cdots+\bar{c}_{n} x^{n}\right)\right) \\
& =\sum_{j, e=0}^{n} a_{j+e} c_{j} \overline{c_{e}} \geq 0 \quad \text { when }\left(a_{n}\right) \text { is "positive definite" }
\end{aligned}
$$

Define a (semi-) inner product on $\mathbb{C}[x]$ by

$$
\langle p, r\rangle=L(p \bar{r}) .
$$

Monomials $h_{0}=1, h_{1}=x, h_{2}=x^{2}, \ldots$
are lin. indef. but not orthogonal. ... Outhogonalize!

Gram-Schmidt:
$m_{n}=U_{1}$

$$
\begin{aligned}
u_{0} & =h_{0}=1 \quad e_{0}=1 \\
u_{1} & =h_{1}-\left\langle\mu_{1}, e_{0}\right\rangle e_{0}=x-L(x \cdot 1)=x-a_{1}, e_{1}=\frac{x-a_{1}}{\sqrt{a_{2}-a_{1}^{2}}} \\
u_{2} & =h_{2}-\left\langle h_{2}, e_{0}\right\rangle e_{0}-\left\langle h_{2}, e_{1}\right\rangle e_{1} \\
& =x^{2}-\left\langle x^{2}, 1\right\rangle 1-\left\langle x^{2}, \frac{\left.x-a_{1}\right\rangle}{\sqrt{a_{2}-a_{1}^{2}}} \frac{\left(x-a_{1}\right)}{\sqrt{a_{2}-a_{1}^{2}}}\right. \\
& =x^{2}-x \frac{a_{3}-a_{2} a_{1}}{\left(a_{2}-a_{1}^{2}\right)}-a_{2}-\frac{a_{2} a_{1}-a_{3}}{\left(a_{2}-a_{1}^{2}\right)} a_{1}=x^{2}-x \frac{a_{3}-a_{2} a_{1}}{\left(a_{2}-a_{1}^{2}\right)}+\frac{a_{1} a_{5}-a_{2}^{2}}{\left(a_{2}-a_{1}^{2}\right)}
\end{aligned}
$$

Example: $a_{0}=1, \quad a_{n}= \begin{cases}0, & n \text { od } \\ (n-1)!!, & n \text { even }\end{cases}$

$$
\begin{aligned}
& a_{2}=1,0, a_{4}=3,0, a_{6}=15, \ldots \\
& w \\
& \cup \\
& \cup \cup
\end{aligned}
$$

$$
L\left(x^{n}\right)=a_{n} .
$$

Orthogonalize $1, x, x^{2}, \ldots$

$$
\left.\begin{array}{rl}
U_{0} & =1 \\
U_{1} & =x-\langle x, 1\rangle 1=x-y(x)^{0} \\
U_{2} & =x^{2}-\left\langle x^{2}, 1\right\rangle 1-\left\langle x^{2}, \frac{x}{\nu}\right\rangle x \\
& =x^{2}-1-0=x^{2}-1
\end{array}\right\} \begin{aligned}
& \text { Hermite ops } \\
& 1, x, x^{2}-1, \ldots \\
& \text { (we will further } \\
& \text { refine these) }
\end{aligned}
$$

Gram-Schmidt: $\quad u_{0}=h_{0}$

$$
u_{n}=\left.\right|_{\left.\begin{array}{ccccc}
\left\langle h_{0}, h_{0}\right\rangle & \left\langle h_{1}, h_{0}\right\rangle & \ldots & \left\langle h_{n-1}, h_{0}\right\rangle & \left\langle h_{n}, h_{0}\right\rangle \\
\left\langle h_{0}, h_{1}\right\rangle & \left\langle h_{1}, h_{1}\right\rangle & \ldots & \left\langle h_{n-1}, h_{1}\right\rangle & \left\langle h_{n-1} h_{1}\right\rangle \\
\vdots & \vdots & & \vdots & \vdots \\
h_{0} & h_{1} & \cdots & h_{n-1} & h_{n}
\end{array} \right\rvert\,} ^{\left|\begin{array}{cccc}
\left\langle h_{0}, h_{0}\right\rangle & \cdots & \left\langle h_{n-1}, h_{0}\right\rangle \\
\left\langle h_{0}, h_{1}\right\rangle & \cdots & \left\langle h_{n-1}, h_{1}\right\rangle \\
\vdots & & \vdots \\
\left\langle h_{0}, h_{n-1}\right\rangle & \ldots & \left\langle h_{n-1}, h_{n-1}\right\rangle
\end{array}\right|}
$$

(Exercise)

$$
\begin{aligned}
& \mu_{0}=1, h_{1}=x, h_{2}=x^{2}, \ldots \\
& U_{n}=\left|\begin{array}{ccccc}
1 & a_{1} & a_{2} & \ldots & a_{n} \\
a_{1} & a_{2} & a_{3} & \ldots & a_{n+1} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_{2 n-1} \\
1 & x & x^{2} & \cdots & x^{n}
\end{array}\right| \text { def } H_{n-1} \\
& U_{0}=1, U_{1}=x-a_{1}, U_{2}=x^{2}-x \frac{a_{3}-a_{2} a_{1}}{\left(a_{2}-a_{1}^{2}\right)}+\frac{a_{1} a_{3}-a_{2}^{2}}{\left(a_{2}-a_{1}^{2}\right)}, \cdots
\end{aligned}
$$

are orthogonal wot L, i.e. $L\left(U_{j} U_{k}\right)=\delta_{j k} L\left(\left|U_{j}\right|^{2}\right)$

Tho Polys $\left(U_{n}\right)_{n z 1}$, orthogonal writ some $L \geq 0$ satisfy

$$
U_{n+1}(x)=\left(x-\alpha_{n}\right) U_{n}(x)-\beta_{n} U_{n-1}(x)
$$

where $\alpha_{n}, \beta_{n} \in \mathbb{R}$ and $\beta_{n} \geq 0 \quad \forall n$.

Exercise: Prove tho $\&$ deduce formulas for α_{n} and β_{n}.

$$
\text { In particular, show that } \beta_{n}=\frac{\operatorname{det}\left(H_{n+1}\right) \operatorname{det}\left(H_{n-1}\right)}{\operatorname{det}^{2}\left(H_{n}\right)}
$$

Example: $\quad a_{n}= \begin{cases}0 & n \text { odd } \\ (n-1)!! & n \text { even }\end{cases}$
$U_{0}=1, U_{1}=x, U_{2}=x^{2}-1, \ldots$ Hermite ops

$$
U_{n+1}(x)=x U_{n}(x)-n U_{n-1}(x)
$$

$$
\alpha_{n}, \beta_{n} \in \mathbb{C}
$$

Thm (Stieltjes, Shohat, Stone, Favard,...)

$$
\begin{aligned}
& \text { Polys }\left(U_{n}\right)_{n \geq 1} \text { satisfaing } \\
& U_{n+1}(x)=\left(x-\alpha_{n}\right) U_{n}(x)-\beta_{n} U_{n-1}(x)
\end{aligned}
$$

are orthogenal wrt unique l in funct L on $\mathbb{C}[x]$. $L \geq 0 \Leftrightarrow \alpha_{n}, \beta_{n} \in R$ and $\beta_{n} \geq 0 \quad \forall n$.

Proof: Exercise

Started with $\left(a_{n}\right)_{n \geq 0}$ strictly positive definite
Defined a positive linear funct. on $\mathbb{C}[x]$ by $L\left(x^{n}\right)=a_{n}$
Defined inner product on $\mathbb{C}[x]$ by

$$
\langle p, q\rangle=L(p \bar{q})
$$

let $x=\overline{\mathbb{C}[x]}\langle$,$\rangle .$
Gave an orthonormal basis $U=\left\{U_{n} /\left\|U_{n}\right\|\right\}_{n \geq 0}$
Define linear operator M m $\operatorname{spon}(U)$ as $M p(x)=x p(x)$ Observe that $\left\langle M^{n} \%^{\prime}, \%^{\prime}\right\rangle=a_{n}=L\left(x^{n}\right)$

Lift to a symmetric op on X, self-adjisint extension
\rightarrow spectral them supplies $\mu \geq 0$ s.t. $a_{n}=\int_{\mathbb{R}} x^{n} d \mu(x)$

Example: $a_{0}=1, a_{n}= \begin{cases}0, & n \text { od } \\ (n-1)!!, & n \text { even }\end{cases}$

Generally: questions of uniqueness (not relevant this time)

$$
U_{0}(x)=1, \quad U_{1}(x)=x-\alpha_{1}, \quad U_{n+1}(x)=\left(x-\alpha_{n}\right) U_{n}(x)-\beta_{n} U_{n-1}(x)
$$

Tho (Viennot '84) For $n, k, e \in \mathbb{N}_{0}$

$$
L\left(x^{n} U_{\varepsilon}(x) U_{e}(x)\right)= \begin{cases}\beta_{1} \beta_{2} \cdots \beta_{k} \sum_{\omega \in \mu_{k, l, n}} \omega t(\omega) & n \neq 0 \\ \beta_{1} \beta_{2} \cdots \beta_{k} \delta_{e k} & n=0\end{cases}
$$

where $\mu_{k, l, n}$ is the set of "Motzkin" paths starting at $(0, k)$ and ending at (n, l) with weights

$$
{\underset{(i, j)}{\alpha_{j}}(i+1, j) \quad \underbrace{(i+1,1}_{(i, j)}(i+1, j+1) \quad 1}_{(i, j)}^{1}
$$

$$
L\left(x^{n} U_{\varepsilon}(x) U_{e}(x)\right)=\beta_{1} \beta_{2} \cdots \beta_{k} \sum_{\omega \in \mu_{k, l, n}} \omega t(\omega)
$$

where $\mu_{k, l, n}$ is the set of "Motzkin" paths starting at $(0, k)$ and ending at (n, e) with weights

$$
{\left.\underset{(i, j)}{\alpha_{j}}{\underset{(i+1, j)}{\beta_{j+1}}(i+1, j+1)}_{(i, j)}^{1}(i+1, j-1)\right)}_{(i, j)}^{(i)}
$$

Notice: Symmetry in k and l

$k>e$

$$
L\left(x^{n} U_{\varepsilon}(x) U_{e}(x)\right)=\beta_{1} \beta_{2} \cdots \beta_{k} \sum_{\omega \in \mu_{k, l, n}} \omega t(\omega)
$$

where $\mu_{k, l, n}$ is the set of "Motzkin" paths starting at $(0, k)$ and ending at (n, l) with weights

Special case $\varepsilon=e=0: \quad L\left(x^{n}\right)=\sum_{\omega \in \mu_{n}} \omega t(\omega)$
Hence

$$
\sum_{n \geq 0} L\left(x^{n}\right) z^{n}=\frac{1}{1-\alpha_{0} z-\frac{\beta_{1} z^{2}}{1-\alpha_{1} z-\frac{\beta_{2} z^{2}}{\cdots}}}
$$

$$
U_{0}(x)=1, \quad U_{1}(x)=x-\alpha_{1}, \quad U_{n+1}(x)=\left(x-\alpha_{n}\right) U_{n}(x)-\beta_{n} U_{n-1}(x)
$$

$$
U_{n+1}(x)=x U_{n}(x)-n U_{n-1}(x)
$$

Example: Hermite ops

$$
1, x, x^{2}-1, x^{3}-3 x, \ldots
$$

$$
\begin{aligned}
L\left(x^{2} u_{0} u_{2}\right) & =L\left(x^{2} \cdot 1 \cdot\left(x^{2}-1\right)\right) \\
& =3!!-1!!=2=2
\end{aligned}
$$

$$
L\left(x^{2} u, u_{2}\right)=L\left(x^{2} \cdot x \cdot\left(x^{2}-1\right)\right)=0
$$

$$
L\left(x^{2} v_{1}^{2}\right)=L\left(x^{4}\right)=3!!=3=\beta_{1}(1+2)
$$

$$
\begin{aligned}
L\left(x^{2} v_{2}^{2}\right) & =L\left(x^{2}\left(x^{2}-1\right)\left(x^{2}-1\right)\right)=L\left(x^{6}-2 x^{4}+x^{2}\right) \\
& =5!!-2 \cdot 3!!+1!!=15-6+1=10=\beta_{1} \beta_{2}(3+2)
\end{aligned}
$$

$\circ 0$

$$
\begin{aligned}
L\left(x^{4} \cup_{0} \cup_{2}\right)=L\left(x^{4}\left(x^{2}-1\right)\right)=5!!-3!! & =15-3=12 \\
& =\beta_{1}(4+6+2)
\end{aligned}
$$

Putting (1) and (2) together:
Consider a sequence $\left(a_{n}\right)_{n \geq 0}, a_{0}=1$.
Expand its generating function as

$$
\sum_{n \geq 0} a_{n} z^{n}=\frac{1}{1-\alpha_{0} z-\frac{\beta_{1} z^{2}}{1-\alpha_{1} z-\frac{\beta_{2} z^{2}}{\cdots}}}
$$

Equivalently. $\left(a_{n}\right)_{n z 0}$ is the sequence of moments of
the orthogonalizing functional L for the polynomials

$$
U_{0}(x)=1, U_{1}(x)=x-1, \quad U_{n+1}(x)=\left(x-\alpha_{n}\right) U_{n}(x)-\beta_{n} U_{n-1}(x)
$$

We have $L \geq 0$
$\Leftrightarrow\left(a_{n}\right)_{n \geqslant 0}$ is a seq. of moments of a probability measure on \mathbb{R}
$\Longleftrightarrow \alpha_{n}, \beta_{n} \in \mathbb{R}$ and either $\beta_{n}>0 \forall n$ (measure has infinite support) or
$\beta_{n}>0 \forall n \leq N$ and C.F. terminates with β_{N} (measure supported on N elements)
\Leftrightarrow matrices $H_{1}, H_{2}, H_{3}, \ldots$ are positive semidefinite.
(Hamburger moment problem)

What about total positivity?
$H=\left[a_{i+j}\right]_{i . j} \geq 0$ totally positive \Leftrightarrow measure supported on $[0, \infty)$ (Stieltjes moment problem)

$$
\Leftrightarrow \sum_{n \geq 0} a_{n} z^{n}=\frac{1}{1-\frac{\beta . z}{1-\frac{\beta_{2} z}{\ldots}}} \text { (S-fraction) with } \beta_{n} \text { as above. }
$$

More excmples:

$$
\begin{aligned}
& \begin{array}{r}
\frac{1}{1-\frac{z}{1-\frac{2 z}{1-\frac{3 z}{\cdots .}}}}=\sum_{n \geq 0}(2 n-1)(2 n-3) \cdots 3 \cdot 1 z^{n} \\
\beta_{n}=n
\end{array} \\
& \frac{1}{1-\frac{z}{1-\frac{z}{1-\frac{z}{\cdots}}}}=\sum_{n \geq 0} \operatorname{Cn} z^{n} \\
& \beta_{n}=1 \\
& \frac{1}{1-z-\frac{z^{2}}{1-2 z-\frac{2 z^{2}}{\cdots}}}=\sum_{n \geq 0} B n z^{n} \\
& \beta_{n}=n \\
& \frac{1}{1-z-\frac{1^{2} \cdot z^{2}}{1-3 z-\frac{2^{2} \cdot z^{2}}{\cdots}}}=\sum_{n \geq 0} n!z^{n} \\
& \beta_{n}=n^{2}
\end{aligned}
$$

(3) Operator models

Let x be \mathbb{C} - Hilbert with $0 . n$. basis $\left(e_{n}\right)_{n \geq 0}$.
Let A and \tilde{A} be linear openators with matrices in (e_{n}):

$$
A=\left[\begin{array}{ccc}
\alpha_{0} & \beta_{1} & \\
1 & \alpha_{1} \beta_{2} & \\
& 1 & \alpha_{2} \\
\hline & \beta_{3} & \\
& & \ddots \\
& & \ddots
\end{array}\right], \quad \tilde{A}=\left[\begin{array}{cc}
\alpha_{0} \sqrt{\beta_{1}} & \\
\sqrt{\beta_{1}} \alpha_{1} \sqrt{\beta_{2}} & \\
& \\
\sqrt{\beta_{2}} \alpha_{2} \sqrt{\beta_{3}} \\
\ddots & \\
& \\
&
\end{array}\right] \quad \begin{aligned}
& \alpha_{0}, \alpha_{1}, \ldots e \mathbb{R} \\
& \beta_{1}, \beta_{2}, \ldots \geq 0
\end{aligned}
$$

Observe: $\sum_{m \in \mu_{n}} w t(m)=\left\langle A^{n} e_{0}, e_{0}\right\rangle$

$$
\begin{aligned}
& =\left\langle\tilde{A}^{n} e_{0}, e_{0}\right\rangle \quad n^{\text {th }} \text { moment of } \tilde{A} \\
& \text { ort } \mathbb{E}(\cdot)=\left\langle\cdot e_{0}, e_{0}\right\rangle
\end{aligned}
$$

Def A noncommutative probability space is a pair (A, φ) where: \mathcal{A} is a *-algebra, $1 \in \mathcal{A}$. "Noncommutative," random variables"

- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ linear, $\varphi(1)=1, \varphi\left(x^{*} x\right) \geq 0 \downarrow x \in \mathcal{A}$.
"Expectation"
Example 1: $A=\bigcap_{p \geq 0} L_{\mathbb{C}}^{p}(\Omega, \mathbb{P}), \quad \varphi=\mathbb{E}$

Example 2: $\mathcal{A}=\operatorname{Mat}_{n \times n}(\mathbb{C}), \varphi=\frac{1}{n} \operatorname{Tr}$

Example 3: Combine Ex 1 6 Ex 2 (Exercise)

Compare Def to Ex 1-3. Typically, A has more structure.

Def The distribution of $x \in \mathcal{A}$ is determined b its moments

$$
\{\varphi(\underbrace{\left.x^{n_{1}}\left(x^{*}\right)^{m_{1}} x^{n_{2}}\left(x^{*}\right)^{m_{2}} \ldots x^{n_{k}}\left(x^{*}\right)^{n_{k}}\right): k \in \mathbb{N}}_{\text {interval partitions }}\}_{n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{1} \in \mathbb{N}_{0}}
$$

For $x, y \in \mathcal{A}, x=x^{*}, y=y^{*}$, their joint distribution is determined by:

$$
\left\{\varphi\left(x^{n_{1}} y^{m_{1}} x^{n_{2}} y^{m_{2}} \ldots x^{n_{k}} y^{m_{6}}\right)\right\}
$$

\leadsto Notions of independence $=$ rules for factorizing moments
E.g. x_{1} y classically independent $\Rightarrow \varphi\left(x y x^{2} y\right)=\varphi\left(x^{3}\right) \varphi\left(y^{2}\right)$ all partitions
E.j. x, γ Boolean independent $\Rightarrow \varphi\left(\underline{x} \underline{y} \underline{x}^{2} \underline{y}\right)$

$$
=\varphi(x) \varphi\left(x^{2}\right)(\varphi(y))^{2}
$$

interval partitions
E.j. \quad., f freely independent \Rightarrow

$$
\varphi\left((x-\varphi(x))(y-\varphi(y))\left(x^{2}-\varphi\left(x^{2}\right)\right)(y-\varphi(y))\right)=0
$$

Hence $\varphi\left(x y x^{2} y\right)=$? (Exercise)

General observation: probabilistic structure

combinatorial structure

Bona fire probability:
Suppose A is a C^{*} algebra. Take $x \in \mathcal{A}$ sit. $x=x^{*}$.

By the Spectral Theorem:
$\exists \mu$ a prob. measure on \mathbb{R} s.t. $\varphi\left(x^{n}\right)=\int_{\mathbb{R}} \xi^{n} d \mu(\xi)$

$\binom{$ Which types of combinatorial objects can play a structural role? }{ When is $\left(a_{n}\right)_{n \geq 0}$ a moment sequence? Next lect. }

Positivity: Combinatorial factorization into irreducibles vs.
moment - cumulcht formula

Combinatorial view:
identify families of naturally occurring irreducibles into which objects can be decomposed and from which they can be uniquely reconstructed

Journal of COmbinatorial theory, Series A 38, 143-169 (1985)

The Enumeration of Irreducible Combinatorial Objects

Janet Simpson Beissinger

Communicated by the Managing Editors
Received December 22, 1982

Three canonical examples:
(ALL) Decomposing diagrams along all set partitions
Erg. permutations factorizing into cycles

each part is assigned a unique cycle

General formula (the exponential formula):

$$
\begin{aligned}
& A(x)=\sum \frac{a_{n}}{n!} x^{n} \quad \text { "ales" } \\
& I(x)=\sum \frac{i_{n}}{n!} x^{n} \quad \text { "irreducibles" } \\
& A(x)=\exp (I(x)) \quad \text { Riddell 'si }
\end{aligned}
$$

Three canonical examples:
(NC) Decomposing diagrams along non-crossing partitions
E.g. NC partitions themselves

E.j. Positroids decomposing into "connected positroids" (recall Ardilla, Rincón, Williams '16)

General formula (the exponential formula):

$$
\begin{aligned}
& A(x)=\sum a_{n} x^{n} \quad \text { "ales" } \\
& I(x)=\sum i_{n} x^{n} \quad \text { "irreducibles" } \\
& A(x)=1+I(x A(x)) \quad \text { Simpson Beissinger ' } 85
\end{aligned}
$$

Three canonical examples:
(INTERVAL) Decomposing diagrams along interval partitions
E.g. Permutations factorizing along interval partitions into "Stabilized-interval-free" (SIF) permutations (Gallon)

SIT

NOT SIG

General formula (the exponential formula):

$$
\begin{aligned}
& A(x)=\sum a_{n} x^{n} \quad \text { "ales" } \\
& I(x)=\sum i_{n} x^{n} \quad \text { "irreducibles" } \\
& A(x)=(1-I(x))^{-1}
\end{aligned}
$$

Fact: when the sequence of "alls" is a moment sequences the sequence of "irreducibles" in the previous 3 examples are cumulant sequences.

Recall: cumulents linearize convolution

$$
\text { i.e. } k_{x+y}=k_{x}+k_{y}
$$

Dependent on the notion of independence

Specifically:
Classical moment-cumulant formula $M(z)=e^{K(z)}$

Free moment-cumulant formula $M(z)=1+C(z M(z))$ Speicher 'gl (independent)
Boolean moment-cumulant formula $M(z)=\frac{1}{1-I(z)}$

Next:

Which combinatorial structures are naturally captured through Motzkin paths (continued fractions)?

How can we unify a number of known combinatorial continued fractions?

How do we decompose a combinatorial statistic in terms of elementary building blocles?

