Virginia integrable probability summer school 2024

Natasha Blitvic Slim Kammoun

June 2024

We recall some definitions:
Hankel total positivity: A sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ is Hankel totally positive if all minors of the Hankel matrix $H=\left(a_{i+j}\right)_{i, j \geq 0}$ are non-negative.

Hankel positivity: A sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ is Hankel positive if all the principal minors of the Hankel matrix $H=\left(a_{i+j}\right)_{i, j \geq 0}$ are non-negative.

Toeplitz total positivity: A sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ is Toeplitz totally positive if all minors of the Hankel matrix $H=\left(a_{i-j}\right)_{i, j \geq 0}$ are non-negative.

Moment Sequence: A sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is called a moment sequence if there exists a positive Borel measure μ on \mathbb{R} such that

$$
a_{n}=\int_{\mathbb{R}} x^{n} d \mu(x) \quad \text { for all } n \geq 0
$$

Dyck Path: A Dyck path is a lattice path in the plane with steps $U=(1,1)$ (up) and $D=(1,-1)$ (down) that starts at the origin $(0,0)$, ends at $(2 n, 0)$, and never goes below the x-axis.

Dyck Numbers C_{n} : The number of Dyck paths of length $2 n$.
Motzkin Path: A Motzkin path is a lattice path in the plane with steps $U=(1,1)$ (up), $D=(1,-1)$ (down), and $H=(1,0)$ (horizontal) that starts at
the origin $(0,0)$, ends at $(n, 0)$, and never goes below the x-axis.

Motzkin Numbers M_{n} : The number of Motzkin paths of length n.

Problem 1

Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a sequence of strictly positive real numbers

1. Show that if \boldsymbol{a} is Hankel (resp. Toeplitz) totally positive, then \boldsymbol{a} is logconvex (resp. log-concave).
2. Construct a sequence that is log-convex but not Hankel totally positive.
3. Show that if \boldsymbol{a} is log-concave then \boldsymbol{a} is unimodal.

Problem 2

1. Show that the Catalan numbers satisfy the recurrence equation

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}, \quad C_{0}=1
$$

2. Deduce that the generating function $C(z)=\sum_{n=0}^{\infty} C_{n} z^{n}$ is

$$
C(z)=\frac{1-\sqrt{1-4 z}}{2 z}
$$

3. Show that the Motzkin numbers M_{n} satisfy the recurrence equation

$$
M_{n}=M_{n-1}+\sum_{i=0}^{n-2} M_{i} M_{n-2-i}, \quad M_{0}=1, M_{1}=1
$$

4. Deduce that the generating function $M(z)=\sum_{n=0}^{\infty} M_{n} z^{n}$ is

$$
M(z)=\frac{1-z-\sqrt{(1+z)(1-3 z)}}{2 z^{2}}
$$

Problem 3

We recall that the semi-circular law is the measure supported on $[-2,2]$ with density

$$
f(x)=\frac{1}{2 \pi} \sqrt{4-x^{2}}
$$

1. Using the generating function, show that the n-th Catalan is given by $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
2. Deduce that Catalan numbers are log-convex.
3. Show that Catalan numbers are the even moments of the semi-circular law.
4. Deduce that $\left(C_{n}\right)_{n \geq 1}$ is Hankel totally positive.

Problem 4

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be two sets of vertices in a finite directed weighted acyclic graph. Let $P\left(a_{i}, b_{j}\right)$ denote the set of all paths from a_{i} to b_{j} in the graph, and let $w(p)$ denote the weight of a path p (product of the weights of the edges). Define $F\left(a_{i}, b_{j}\right)=\sum_{p \in P\left(a_{i}, b_{j}\right)} w(p)$.

A tuple of paths from A to B is a tuple of paths with starting points a_{i} and ending points b_{j}.

Given a tuple of non-intersecting paths that maps a_{i} to b_{j}, its weight is the product of the weights of the paths multiplied by the sign of the permutation σ that maps i to $j=\sigma(i)$.

Prove that the sum of the weights of all tuples of non-intersecting paths from A to B is

$$
\operatorname{det}\left(F\left(a_{i}, b_{j}\right)\right)_{1 \leq i, j \leq n}
$$

Hint:

$$
\operatorname{det}\left(F\left(a_{i}, b_{j}\right)\right)_{1 \leq i, j \leq n}=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} F\left(a_{i}, b_{\sigma(i)}\right)
$$

Problem 5

Let M_{n} be a matrix from the Gaussian Orthogonal Ensemble (GOE), which consists of $n \times n$ real symmetric matrices whose entries are independent (up to symmetry) and normally distributed with mean 0 . Specifically, the entries on the diagonal are distributed as $\mathcal{N}(0,2)$ and the off-diagonal entries are distributed as $\mathcal{N}(0,1)$.

The normalized trace of a matrix M is defined as

$$
\operatorname{tr}(M)=\frac{1}{n} \sum_{i=1}^{n} M_{i i}
$$

1. Prove the following

$$
\mathbb{E}\left(\operatorname{tr}\left(M_{n}^{2 k}\right)\right)=n^{k} C_{k}(1+o(1))
$$

2. Deduce an interpretation of the Catalan numbers in terms of large-dimensional limits of GOE matrices.
3. Was the Gaussianity assumption necessary? Come up with a generalization of the result in 2 .
