Virginia integrable probability summer school 2024

Natasha Blitvic Slim Kammoun

June 2024

Problem 1

Let $x_{1}, x_{2}, \ldots, x_{k}$ be some k real numbers. Let

$$
\begin{gathered}
a_{0}=1 \\
a_{1}=\sum_{i} x_{i} \\
a_{2}=\sum_{i_{1}<i_{2}} x_{i_{1}} x_{i_{2}} \\
a_{n}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq k} \prod_{j=1}^{n} x_{i_{j}}
\end{gathered}
$$

1. Compute the generating function $\sum_{n \geq 0} a_{n} z^{n}$.
2. Prove that $\left(a_{n}\right)_{n \geq 0}$ is Toeplitz totally positive if and only if $x_{1}, \ldots, x_{k} \geq 0$.

Problem 2

Prove that:

$$
M(z)=\sum_{n=0}^{\infty} M_{n} z^{n}=\frac{1}{1-z-\frac{z^{2}}{1-z-\frac{z^{2}}{1-z-\frac{z^{2}}{1-z-\frac{z^{2}}{1-\cdots}}}}}
$$

$$
C(z)=\sum_{n=0}^{\infty} C_{n} z^{n}=\frac{1}{1-\frac{z}{1-\frac{z}{1-\frac{z}{1-\frac{z}{1-\cdots}}}}},
$$

and

$$
\sum_{n=0}^{\infty} B_{n} z^{n}=\frac{1}{1-z-\frac{z^{2}}{1-2 z-\frac{2 z^{2}}{1-3 z-\frac{3 z^{2}}{1-4 z-\frac{4 z^{2}}{1-\cdots}}}}}
$$

where C_{n} is the n-th Catalan Number, M_{n} is the n-th Motzkin number and B_{n} is the number of set partitions of $[n]$.

Problem 3

- Show that $(2 n-1)!$! counts perfect matchings (fixed points free involutions).
- Deduce that

$$
\sum_{n=0}^{\infty}(2 n-1)!!z^{n}=\frac{1}{1-\frac{z}{1-\frac{2 z}{1-\frac{3 z}{1-\frac{4 z}{1-\cdots}}}}}
$$

Problem 4

Prove that any symmetric polynomial can be expressed in a unique way as a polynomial in the elementary symmetric polynomials.

Problem 5

Let $P(x)=\sum_{n \geq 0} a_{n} x^{n}$ be a formal power series where a_{n} are real numbers and $a_{0} \neq 0$.

1. Prove that there exists a unique formal power series $\sum_{n \geq 0} b_{n} x^{n}$ such that

$$
\left(\sum_{n \geq 0} a_{n} x^{n}\right)\left(\sum_{n \geq 0} b_{n} x^{n}\right)=1
$$

2. Prove that $b_{0}=a_{0}^{-1}$ and

$$
b_{k}=\frac{(-1)^{k}}{a_{0}^{k+1}} \operatorname{det}\left(\left[\begin{array}{ccccc}
a_{1} & a_{0} & 0 & \cdots & 0 \\
a_{2} & a_{1} & a_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{k-1} & a_{k-2} & a_{k-2} & \cdots & a_{0} \\
a_{k} & a_{k-1} & a_{k-2} & \cdots & a_{1}
\end{array}\right]\right)
$$

3. Do we need that the $\left(a_{n}\right)$ are real numbers ?

Problem 6

Recall first some definitions

Young Diagrams

A Young diagram of shape $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is a graphical representation of a partition. It consists of left-aligned rows of boxes, where the i-th row contains λ_{i} boxes. For example, the Young diagram for $\lambda=(4,3,1)$ is:

Semistandard Young Tableaux (SSYT)

A Semistandard Young Tableau (SSYT) of shape λ and entries from $\{1,2, \ldots, n\}$ is a filling of the Young diagram of λ such that the entries weakly increase across rows and strictly increase down columns.

Schur Polynomials

The Schur polynomial $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ indexed by a partition λ are equivalently defined as:

$$
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{T} x^{T}
$$

where the sum is over all SSYT T of shape λ.

1. Prove Jacobi-Trudi formula (using Lindström-Gessel-Viennot lemma).

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(\left(h_{\lambda_{i}+j-i}\right)_{i, j}^{r \times r}\right),
$$

h_{i} are the complete homogeneous symmetric polynomials.
2. Prove the characterization of Schur positive specializations in terms of totally positive Toeplitz matrices

