Virginia integrable probability summer school 2024

Natasha Blitvic Slim Kammoun

June 2024

Problem 1

Let G be a locally finite undirected graph, V_{0} be a vertex, and let a_{n} be the number of walks of length n in G from V_{0} to V_{0}.

1. Suppose first that G is finite. Prove that $\left(a_{n}\right)_{n \geq 0}$ is a moment sequence.
2. Prove that $\left(a_{n}\right)_{n \geq 0}$ is a moment sequence when G is locally finite.
3. Deduce that $\binom{2 n}{n}$, Catalan numbers, Motzkin numbers, and $\binom{2 n}{n}^{2}$ are moment sequences.

Problem 2

Consider the Gaussian measure.

$$
\frac{\mathrm{d} \mu(x)}{\mathrm{d} x}=\frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}}
$$

and recall that Hermite polynomials are defined by

$$
H_{n}(x)=(-1)^{n} e^{\frac{x^{2}}{2}} \frac{d^{n}}{d x^{n}} e^{-\frac{x^{2}}{2}}
$$

1. Prove the two-term recurrence equation for the Hermite polynomials:

$$
H_{n+1}(x)=x H_{n}(x)-n H_{n-1}(x), \quad H_{0}(x)=1, \quad H_{1}(x)=x .
$$

2. Prove that $\left(H_{n}\right)_{n \geq 1}$ is the family of orthogonal polynomials associated the Gaussian measure.
3. Compute the associated moments:

$$
\mu_{n}=\int_{-\infty}^{\infty} x^{2 n} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x
$$

Problem 3

Suppose that x and y are freely independent.

1. Prove that: $\varphi(x y)=\varphi(x) \varphi(y)$
2. Compute $\varphi\left(x y x^{2} y\right)$.

Problem 4

Prove that if $\left(P_{n}\right)_{n \geq}$ are the orthogonal polynomials w.r.t to a linear functional then :

$$
P_{n+1}(x)=\left(x+B_{n}\right) P_{n}(x)-C_{n} P_{n-1}(x), \quad n \geq 1 .
$$

Problem 5

1. Prove the formula seen in the lecture: When decomposing into set partitions :

$$
A(x)=\exp (I(x))
$$

Where

$$
\begin{gathered}
A(x)=\sum \frac{a_{n} x^{n}}{n!} " \text { all set partitions" } \\
I(x)=\sum \frac{i_{n} x^{n}}{n!} \text { "irreducibles" }
\end{gathered}
$$

2. Deduce that if a_{n} are the (classical) moments of a random variable than i_{n} are the (classical) cumulants of the same random variable.

Problem 6

Consider the Hilbert space $\ell_{2}=\ell_{2}\left(\mathbb{N}_{0}\right)$ formed of complex sequences $a=$ $\left(a_{n}\right)_{n \geq 0}$ satisfying $\sum_{n \geq 0}\left|a_{n}\right|^{2}<\infty$, endowed with the inner product $\langle a, b\rangle=$ $\sum_{n \geq 0} a_{n} \overline{b_{n}}$. It is easy to check that the elements $\left(e_{n}\right)_{n \geq 0}$,

$$
e_{n}:=\left(\delta_{1, n}, \delta_{2, n}, \delta_{3, n}, \ldots\right)=(0, \ldots, 0,1,0, \ldots)
$$

form an orthonormal basis of ℓ_{2}.
Consider the operator R defined on the basis elements as follows:

$$
R e_{n}=e_{n+1}
$$

It is easy to check that R extends to a bounded operator on all of ℓ^{2}. Furthermore, it is easy to check that its adjoint R^{*} is determined by $R e_{0}=0$ and $R^{*} e_{n}=e_{n-1}$ for $n \geq 1$.

Consider the linear functional $E: \mathcal{B}\left(\ell^{2}\right) \rightarrow \mathbb{C}$, given by $E(S)=\left\langle S e_{0}, e_{0}\right\rangle$. It is easy to check that this is a positive linear functional.

1. (If you're familiar with Hilbert spaces, prove the aforementioned "easy to check" assertions.
2. Let $S=R+R^{*}$. Compute the moments $E\left(S^{n}\right)$. What is the law of S ?
3. Connect this result to Problem 5 of Problem Set 1. What can you conclude?
