3D t-embedding of an Aztec diamond graph (doubly periodic case)
domino-tilings
Leonid Petrov
Simulation Info
3D t-embedding of an Aztec diamond graph (doubly periodic case)
domino-tilings
Leonid Petrov
An illustration of the T-embedding of the Aztec diamond graph (parameter \(n\)), with 3D height given by the imaginary part of the O-embedding. The \((x,y)\) coordinates come from \(\mathrm{Re}(T), -\mathrm{Im}(T)\), and the \(z\) coordinate is \(\mathrm{Im}(O)\).
Some references:
-
Perfect t‑Embeddings of Uniformly Weighted Aztec Diamonds and Tower Graphs
Tomas Berggren, Matthew Nicoletti, Marianna Russkikh (2023, IMRN)
DOI:10.1093/imrn/rnad299
-
Bipartite Dimer Model: Perfect t‑Embeddings and Lorentz‑minimal Surfaces
Dmitry Chelkak, Benoît Laslier, Marianna Russkikh (2021)
arXiv:2109.06272
-
Fluctuations in the Aztec Diamonds via a Lorentz‑minimal Surface
Dmitry Chelkak, Sanjay Ramassamy (2020)
arXiv:2002.07540
code
(note: parameters in the code might differ from the ones in
simulation results below)
-
Link to code
(Interactive 3D T-embedding; see the source code of this page at the link)
-
Link to code
(C++ code for the simulation with tunable scale parameter a (3D version))