[KPZ86] The seminal paper introducing the KPZ equation, which describes the evolution of a growing interface in terms of a stochastic PDE.
[Cor12] A comprehensive survey explaining key breakthroughs leading to the exact one-point distribution for the KPZ equation with narrow-wedge initial data.
[Hai14] A groundbreaking work that rigorously constructs a solution to the KPZ stochastic PDE
using the theory of regularity structures, resolving longstanding analytical challenges.
[ACQ11] A seminal paper that computes the one-point distribution of the KPZ equation, linking
KPZ fluctuations to Tracy–Widom statistics through integrable probability methods.
Recent advances
[CH14], [CH16] Develop the Brownian Gibbs property for the Airy and KPZ line ensembles.
[MQR21] Constructs the KPZ fixed point—the universal Markov process limit of KPZ-class models—with explicit Fredholm determinant formulas for multi-point distributions.
[QR22] Develops the KP equation for the KPZ fixed point distributions. This and the previous paper
are summarized in [Rem22].
[DOV22] Establishes the directed landscape as the scaling limit of last-passage percolation models,
serving as the universal random geometry underpinning KPZ growth.
[BSS24] Introduces the stationary horizon as the unique invariant coupling for the KPZ fixed point,
linking it to the structure of semi-infinite geodesics in the directed landscape.
[BCY24] Develop a framework of two-layered Gibbs measures to describe stationary measures for
geometric LPP and log-gamma polymer models, providing a unified description of the open KPZ
stationary measure.
Cutting edge work by participants (in no particular order)
[BB24] ASEP via Mallows coloring
[BC24] Mallows Product Measure
[AB24] Colored Line Ensembles for Stochastic Vertex Models
[ACH24b] Scaling limit of the colored ASEP and stochastic six-vertex models
[ACH24a] KPZ fixed point convergence of the ASEP and stochastic six-vertex models
[LS23] Contour integral formulas for PushASEP on the ring
[MR23] Exact solution of TASEP and variants with inhomogeneous speeds and memory lengths
[ANP23] Colored Interacting Particle Systems on the Ring: Stationary Measures from Yang–Baxter Equation
[Zha23] Shift-invariance of the colored TASEP and finishing times of the oriented swap process
[KZ24] Asymptotics of dynamic ASEP using duality
[FKZ24] Orthogonal polynomial duality and unitary symmetries of multi-species ASEP(q, θ) and higher-spin vertex models via ∗-bialgebra structure of higher rank quantum groups
[AH23] Strong Characterization for the Airy Line Ensemble
[DLM23] Large deviations for the q-deformed polynuclear growth
[CHHM23] Exceptional times when the KPZ fixed point violates Johansson's conjecture on maximizer uniqueness
[BL24] Pinched-up periodic KPZ fixed point
[LZ25] An upper tail field of the KPZ fixed point
[TTB+TTB 24] Partial yet definite emergence of the Kardar-Parisi-Zhang class in isotropic spin chains
[JRAS22] Ergodicity and synchronization of the KPZ equation
[GRASS23] Jointly invariant measures for the KPZ equation
[She23] Independence property of the Busemann function in exactly solvable KPZ models
[BS23] Time correlations in KPZ models with diffusive initial conditions
[BLS22] Limiting one-point distribution of periodic TASEP
[BPS23] Differential equations for the KPZ and periodic KPZ fixed points
[DS24] Viscous shock fluctuations in KPZ
[Tan24] An invariance principle of 1D KPZ with Robin boundary conditions
[Tsa22] Exact lower-tail large deviations of the KPZ equation
[LT21] Short time large deviations of the KPZ equation
[WY24] From asymmetric simple exclusion processes with open boundaries to stationary measures of open KPZ fixed point: the shock region
[Bus23] Non-existence of three non-coalescing infinite geodesics with the same direction in the directed landscape
[DZ24] Characterization of the directed landscape from the KPZ fixed point
[HP24] The Directed Landscape is a Black Noise
[Wu23] The KPZ equation and the directed landscape
[MPPY24] Grothendieck Shenanigans: Permutons from pipe dreams via integrable probability
[PS24] Rewriting History in Integrable Stochastic Particle Systems
[DK24] Global asymptotics for β-Krawtchouk corners processes via multi-level loop equations
[CM24] The Symplectic Schur Process
[IMS22] Solvable models in the KPZ class: approach through periodic and free boundary Schur measures
[IMS23] New approach to KPZ models through free fermions at positive temperature
[DFV24] Arctic curves of the T-system with slanted initial data
References
[AB24]
A. Aggarwal and A. Borodin. Colored Line Ensembles for Stochastic Vertex Models. arXiv
preprint, 2024. arXiv:2402.06868 [math.PR].
[ACH24a] A. Aggarwal, I. Corwin, and M. Hegde. KPZ fixed point convergence of the ASEP and
stochastic six-vertex models. arXiv preprint, 2024. arXiv:2412.18117 [math.PR].
[ACH24b] A. Aggarwal, I. Corwin, and M. Hegde. Scaling limit of the colored ASEP and stochastic
six-vertex models. arXiv preprint, 2024. arXiv:2403.01341 [math.PR].
[ACQ11]
G. Amir, I. Corwin, and J. Quastel. Probability distribution of the free energy of the continuum
directed random polymer in 1+ 1 dimensions. Comm. Pure Appl. Math., 64(4):466–537, 2011.
arXiv:1003.0443 [math.PR].
[AH23]
A. Aggarwal and J. Huang. Strong Characterization for the Airy Line Ensemble. arXiv
preprint, 2023. arXiv:2308.11908.
[ANP23]
A. Aggarwal, M. Nicoletti, and L. Petrov. Colored Interacting Particle Systems on the Ring:
Stationary Measures from Yang–Baxter Equation. arXiv preprint, 2023. arXiv:2309.11865
[math.PR], to appear in Compositio Math.
[BB24]
A. Borodin and A. Bufetov. ASEP via Mallows coloring. arXiv preprint, 2024. arXiv:2408.16585
[math.PR].
[BC24]
A. Bufetov and K. Chen. Mallows Product Measure. arXiv preprint, 2024. arXiv:2402.09892
[math.PR].
[BCY24]
G. Barraquand, I. Corwin, and Z. Yang. Stationary measures for integrable polymers on a
strip. Invent. Math., 237:1567–1641, 2024. arXiv:2306.05983 [math.PR].
[BL24]
J. Baik and Z. Liu. Pinched-up periodic KPZ fixed point. arXiv preprint, 2024. arXiv:2403.01624
[math.PR].
[BLS22]
J. Baik, Z. Liu, and G. L. F. Silva. Limiting one-point distribution of periodic TASEP. Ann.
Inst. Henri Poincaré Probab. Stat., 58(1):248–302, 2022. arXiv:2008.07024 [math.PR].
[BPS23]
J. Baik, A. Prokhorov, and G. L. F. Silva. Differential equations for the KPZ and periodic KPZ
fixed points. Commun. Math. Phys., 401:1753–1806, 2023. arXiv:2208.11638 [math.PR].
[BS23]
R. Basu and X. Shen. Time correlations in KPZ models with diffusive initial conditions. arXiv
preprint, 2023. arXiv:2308.03473 [math.PR].
[BSS24]
O. Busani, T. Seppäläinen, and E. Sorensen.
The stationary horizon and semi-infinite
geodesics in the directed landscape. Ann. Probab., 52:1–66, 2024. arXiv:2203.13242 [math.PR].
[Bus23]
O. Busani. Non-existence of three non-coalescing infinite geodesics with the same direction
in the directed landscape. arXiv preprint, 2023. arXiv:2401.00513 [math.PR].
[CH14]
I. Corwin and A. Hammond. Brownian Gibbs property for Airy line ensembles. Invent. math.,
195(2):441–508, 2014. arXiv:1108.2291 [math.PR].
[CH16]
I. Corwin and A. Hammond. KPZ line ensemble. Probability Theory and Related Fields, 166(1-2):67–185, 2016. arXiv:1312.2600 [math.PR].
[CHHM23] I. Corwin, A. Hammond, M. Hegde, and K. Matetski. Exceptional times when the KPZ fixed
point violates Johansson's conjecture on maximizer uniqueness. Electron. J. Probab., 28:1–81,
2023. arXiv:2101.04205 [math.PR].
[CM24]
C. Cuenca and M. Mucciconi.
The Symplectic Schur Process.
arXiv preprint, 2024.
arXiv:2407.02415 [math.PR].
[Cor12]
I. Corwin. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory
Appl., 1:1130001, 2012. arXiv:1106.1596 [math.PR].
[DFV24]
P. Di Francesco and H. T. P. Vu. Arctic curves of the T-system with slanted initial data. arXiv
preprint, 2024. arXiv:2403.02479 [math-ph].
[DK24]
E. Dimitrov and A. Knizel. Global asymptotics for β-Krawtchouk corners processes via multilevel loop equations. arXiv preprint, 2024. arXiv:2403.17895 [math.PR].
[DLM23]
S. Das, Y. Liao, and M. Mucciconi. Large deviations for the q-deformed polynuclear growth.
arXiv preprint, 2023. arXiv:2307.01179 [math.PR].
[DOV22]
D. Dauvergne, J. Ortmann, and B. Virág. The directed landscape. Acta Math., 229:201–285,
2022. arXiv:1812.00309 [math.PR].
[DS24]
A. Dunlap and E. Sorensen.
Viscous shock fluctuations in KPZ.
arXiv preprint, 2024.
arXiv:2406.06502 [math.PR].
[DZ24]
D. Dauvergne and L. Zhang. Characterization of the directed landscape from the KPZ fixed
point. arXiv preprint, 2024. arXiv:2412.13032 [math.PR].
[FKZ24]
C. Franceschini, J. Kuan, and Z. Zhou. Orthogonal polynomial duality and unitary symmetries of multi-species ASEP(q, θ) and higher-spin vertex models via ∗-bialgebra structure of
higher rank quantum groups. arXiv preprint, 2024. arXiv:2209.03531 [math.PR].
[GRASS23] S. Groathouse, F. Rassoul-Agha, T. Seppäläinen, and E. Sorensen. Jointly invariant measures
for the Kardar-Parisi-Zhang Equation. arXiv preprint, 2023. arXiv:2309.17276 [math.PR].
[Hai14]
M. Hairer. Solving the KPZ equation. Ann. Math. (2), 178(2):559–664, 2014. arXiv:1109.6811
[math.PR].
[HP24]
Z. Himwich and S. Parekh. The Directed Landscape is a Black Noise. arXiv preprint, 2024.
arXiv:2404.16801 [math.PR].
[IMS22]
T. Imamura, M. Mucciconi, and T. Sasamoto. Solvable models in the KPZ class: approach
through periodic and free boundary Schur measures. arXiv preprint, 2022. arXiv:2204.08420
[math.PR].
[IMS23]
T. Imamura, M. Mucciconi, and T. Sasamoto. New approach to KPZ models through free
fermions at positive temperature. J. Math. Phys., 64(8):083301, 2023.
[JRAS22]
C. Janjigian, F. Rassoul-Agha, and T. Seppäläinen. Ergodicity and synchronization of the KPZ
equation. arXiv preprint, 2022. arXiv:2211.06779 [math.PR].
[KPZ86]
M. Kardar, G. Parisi, and Y. Zhang. Dynamic scaling of growing interfaces. Physical Review
Letters, 56(9):889, 1986.
[KZ24]
J. Kuan and Z. Zhou. Asymptotics of dynamic ASEP using duality. arXiv preprint, 2024.
arXiv:2408.15785 [math.PR].
[LS23]
J.-H. Li and A. Saenz. Contour integral formulas for PushASEP on the ring. arXiv preprint,
2023. arXiv:2308.05372 [math.PR].
[LT21]
Y. Lin and L.-C. Tsai. Short time large deviations of the KPZ equation. Commun. Math. Phys.,
386(1):359–393, 2021. arXiv:2009.10787 [math.PR].
[LZ25]
Z. Liu and R. Zhang. An upper tail field of the KPZ fixed point. arXiv preprint, 2025.
arXiv:2501.00932 [math.PR].
[MPPY24] A.H. Morales, G. Panova, L. Petrov, and D. Yeliussizov. Grothendieck Shenanigans: Permutons from pipe dreams via integrable probability. arXiv preprint, 2024. arXiv:2407.21653
[math.PR].
[MQR21]
K. Matetski, J. Quastel, and D. Remenik. The KPZ fixed point. Acta Math., 227(1):115–203,
2021. arXiv:1701.00018 [math.PR].
[MR23]
K. Matetski and D. Remenik. Exact solution of TASEP and variants with inhomogeneous
speeds and memory lengths. arXiv preprint, 2023. arXiv:2301.13739 [math.PR].
[PS24]
L. Petrov and A. Saenz. Rewriting History in Integrable Stochastic Particle Systems. Commun.
Math. Phys., 405:300, 2024.
[QR22]
J. Quastel and D. Remenik. KP governs random growth off a 1-dimensional substrate. Forum
of Mathematics, Pi, 10:E10, 2022. arXiv:1908.10353 [math.PR].
[Rem22]
D. Remenik. Integrable fluctuations in the KPZ universality class. Proc. Int. Congr. Math. 2022,
pages 4426–4450, 2022. arXiv:2205.01433 [math.PR].
[She23]
X. Shen. Independence property of the Busemann function in exactly solvable KPZ models.
arXiv preprint, 2023. arXiv:2308.11347 [math.PR].
[Tan24]
Y. Tang. An invariance principle of 1D KPZ with Robin boundary conditions. arXiv preprint,
2024. arXiv:2404.19215 [math.PR].
[Tsa22]
L.-C. Tsai. Exact lower-tail large deviations of the KPZ equation. Duke Math. J., 171(9):1879–
1922, 2022. arXiv:1809.03410 [math.PR].
[TTB+24]
K. A. Takeuchi, K. Takasan, O. Busani, P. L. Ferrari, R. Vasseur, and J. De Nardis. Partial yet
definite emergence of the Kardar-Parisi-Zhang class in isotropic spin chains. arXiv preprint,
2024. arXiv:2406.07150 [cond-mat.stat-mech].
[Wu23]
X. Wu. The KPZ equation and the directed landscape. arXiv preprint, 2023. arXiv:2301.00547
[math.PR].
[WY24]
Y. Wang and Z. Yang. From asymmetric simple exclusion processes with open boundaries
to stationary measures of open KPZ fixed point: the shock region. arXiv preprint, 2024.
arXiv:2406.09252 [math.PR].
[Zha23]
L. Zhang. Shift-invariance of the colored TASEP and finishing times of the oriented swap process. Adv. Math., 415:108884, 2023. arXiv:2107.06350 [math.PR].